植物抗非生物胁迫多肽的发现及其功能研究进展。

IF 5.8
Yucong Cao, PingFang Yang, Ming Li
{"title":"植物抗非生物胁迫多肽的发现及其功能研究进展。","authors":"Yucong Cao, PingFang Yang, Ming Li","doi":"10.1007/s44154-025-00220-1","DOIUrl":null,"url":null,"abstract":"<p><p>Plant peptides play crucial roles in various biological processes, including stress responses. This study investigates the functions of plant peptides in response to different adversity stresses, focusing on drought, salt, high temperature, and other environmental challenges. In drought conditions, specific peptides such as CLE25 and CLE9 were found to regulate stomatal closure and root architecture to enhance the efficiency of water utilization. Salt stress induces the expression of CAPE1 and CEP3, which are involved in ion homeostasis and osmoregulation, thereby contributing to salt tolerance in plants. Heat stress triggers the expression of peptides such as CEL45, which contributes to the heat tolerance of cells. Besides, we have also verified a new class of non-conventional peptides, and a large number of non-conventional peptides have been identified in rice seedlings. Understanding the origin and functions of these peptides presents both challenges and opportunities for developing stress-resistant crops. Future research should focus on elucidating the precise molecular mechanisms of peptide-mediated stress responses and exploring their potential applications in agriculture and biotechnology.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"5 1","pages":"36"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102433/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research progress of peptides discovery and function in resistance to abiotic stress in plant.\",\"authors\":\"Yucong Cao, PingFang Yang, Ming Li\",\"doi\":\"10.1007/s44154-025-00220-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant peptides play crucial roles in various biological processes, including stress responses. This study investigates the functions of plant peptides in response to different adversity stresses, focusing on drought, salt, high temperature, and other environmental challenges. In drought conditions, specific peptides such as CLE25 and CLE9 were found to regulate stomatal closure and root architecture to enhance the efficiency of water utilization. Salt stress induces the expression of CAPE1 and CEP3, which are involved in ion homeostasis and osmoregulation, thereby contributing to salt tolerance in plants. Heat stress triggers the expression of peptides such as CEL45, which contributes to the heat tolerance of cells. Besides, we have also verified a new class of non-conventional peptides, and a large number of non-conventional peptides have been identified in rice seedlings. Understanding the origin and functions of these peptides presents both challenges and opportunities for developing stress-resistant crops. Future research should focus on elucidating the precise molecular mechanisms of peptide-mediated stress responses and exploring their potential applications in agriculture and biotechnology.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"5 1\",\"pages\":\"36\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102433/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-025-00220-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-025-00220-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植物多肽在包括逆境反应在内的多种生物过程中发挥着重要作用。本研究探讨了植物多肽在不同逆境胁迫下的功能,重点是干旱、盐、高温和其他环境挑战。在干旱条件下,CLE25和CLE9等特异性肽调控气孔关闭和根系构型,提高水分利用效率。盐胁迫诱导参与离子稳态和渗透调节的CAPE1和CEP3的表达,从而促进植物的耐盐性。热应激触发多肽如CEL45的表达,这有助于细胞的耐热性。此外,我们还验证了一类新的非常规肽,并在水稻幼苗中鉴定了大量非常规肽。了解这些肽的起源和功能为开发抗逆性作物提供了挑战和机遇。未来的研究应集中在阐明肽介导的应激反应的精确分子机制,并探索其在农业和生物技术方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research progress of peptides discovery and function in resistance to abiotic stress in plant.

Plant peptides play crucial roles in various biological processes, including stress responses. This study investigates the functions of plant peptides in response to different adversity stresses, focusing on drought, salt, high temperature, and other environmental challenges. In drought conditions, specific peptides such as CLE25 and CLE9 were found to regulate stomatal closure and root architecture to enhance the efficiency of water utilization. Salt stress induces the expression of CAPE1 and CEP3, which are involved in ion homeostasis and osmoregulation, thereby contributing to salt tolerance in plants. Heat stress triggers the expression of peptides such as CEL45, which contributes to the heat tolerance of cells. Besides, we have also verified a new class of non-conventional peptides, and a large number of non-conventional peptides have been identified in rice seedlings. Understanding the origin and functions of these peptides presents both challenges and opportunities for developing stress-resistant crops. Future research should focus on elucidating the precise molecular mechanisms of peptide-mediated stress responses and exploring their potential applications in agriculture and biotechnology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信