{"title":"植物抗非生物胁迫多肽的发现及其功能研究进展。","authors":"Yucong Cao, PingFang Yang, Ming Li","doi":"10.1007/s44154-025-00220-1","DOIUrl":null,"url":null,"abstract":"<p><p>Plant peptides play crucial roles in various biological processes, including stress responses. This study investigates the functions of plant peptides in response to different adversity stresses, focusing on drought, salt, high temperature, and other environmental challenges. In drought conditions, specific peptides such as CLE25 and CLE9 were found to regulate stomatal closure and root architecture to enhance the efficiency of water utilization. Salt stress induces the expression of CAPE1 and CEP3, which are involved in ion homeostasis and osmoregulation, thereby contributing to salt tolerance in plants. Heat stress triggers the expression of peptides such as CEL45, which contributes to the heat tolerance of cells. Besides, we have also verified a new class of non-conventional peptides, and a large number of non-conventional peptides have been identified in rice seedlings. Understanding the origin and functions of these peptides presents both challenges and opportunities for developing stress-resistant crops. Future research should focus on elucidating the precise molecular mechanisms of peptide-mediated stress responses and exploring their potential applications in agriculture and biotechnology.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"5 1","pages":"36"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102433/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research progress of peptides discovery and function in resistance to abiotic stress in plant.\",\"authors\":\"Yucong Cao, PingFang Yang, Ming Li\",\"doi\":\"10.1007/s44154-025-00220-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant peptides play crucial roles in various biological processes, including stress responses. This study investigates the functions of plant peptides in response to different adversity stresses, focusing on drought, salt, high temperature, and other environmental challenges. In drought conditions, specific peptides such as CLE25 and CLE9 were found to regulate stomatal closure and root architecture to enhance the efficiency of water utilization. Salt stress induces the expression of CAPE1 and CEP3, which are involved in ion homeostasis and osmoregulation, thereby contributing to salt tolerance in plants. Heat stress triggers the expression of peptides such as CEL45, which contributes to the heat tolerance of cells. Besides, we have also verified a new class of non-conventional peptides, and a large number of non-conventional peptides have been identified in rice seedlings. Understanding the origin and functions of these peptides presents both challenges and opportunities for developing stress-resistant crops. Future research should focus on elucidating the precise molecular mechanisms of peptide-mediated stress responses and exploring their potential applications in agriculture and biotechnology.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"5 1\",\"pages\":\"36\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102433/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-025-00220-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-025-00220-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Research progress of peptides discovery and function in resistance to abiotic stress in plant.
Plant peptides play crucial roles in various biological processes, including stress responses. This study investigates the functions of plant peptides in response to different adversity stresses, focusing on drought, salt, high temperature, and other environmental challenges. In drought conditions, specific peptides such as CLE25 and CLE9 were found to regulate stomatal closure and root architecture to enhance the efficiency of water utilization. Salt stress induces the expression of CAPE1 and CEP3, which are involved in ion homeostasis and osmoregulation, thereby contributing to salt tolerance in plants. Heat stress triggers the expression of peptides such as CEL45, which contributes to the heat tolerance of cells. Besides, we have also verified a new class of non-conventional peptides, and a large number of non-conventional peptides have been identified in rice seedlings. Understanding the origin and functions of these peptides presents both challenges and opportunities for developing stress-resistant crops. Future research should focus on elucidating the precise molecular mechanisms of peptide-mediated stress responses and exploring their potential applications in agriculture and biotechnology.