{"title":"骨骼肌激发的分层细胞结构的横向动态粉碎。","authors":"Changyi Liu, Hing-Ho Tsang, Shanqing Xu, Dong Ruan","doi":"10.1088/1748-3190/addc25","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a bionic structure made of skeletal muscle-inspired hierarchical (MH) unit cells is proposed. The mechanical properties and energy absorption characteristics of MH-celled structures with different geometric dimensions under various impact speeds were explored and compared with conventional circular-celled structures using finite element (FE) models in ABAQUS/Explicit. Quasi-static and dynamic tests were conducted to validate the FE modelling approach. Numerical crashworthiness analyses were performed, and the results demonstrate the higher energy absorption capability of MH-celled structures compared to the conventional circular-celled structure. Moreover, it was found that the deformation mode of MH-celled structures is governed by the relative density of the structure and the impact velocity, which can be categorised into quasi-static mode, transition mode and dynamic mode. Parametric studies revealed that both the specific energy absorption and plateau stress of MH-celled structures are enhanced with the increase in the relative density or the impact velocity.
.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lateral dynamic crushing of skeletal muscle-inspired hierarchical celled structures.\",\"authors\":\"Changyi Liu, Hing-Ho Tsang, Shanqing Xu, Dong Ruan\",\"doi\":\"10.1088/1748-3190/addc25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a bionic structure made of skeletal muscle-inspired hierarchical (MH) unit cells is proposed. The mechanical properties and energy absorption characteristics of MH-celled structures with different geometric dimensions under various impact speeds were explored and compared with conventional circular-celled structures using finite element (FE) models in ABAQUS/Explicit. Quasi-static and dynamic tests were conducted to validate the FE modelling approach. Numerical crashworthiness analyses were performed, and the results demonstrate the higher energy absorption capability of MH-celled structures compared to the conventional circular-celled structure. Moreover, it was found that the deformation mode of MH-celled structures is governed by the relative density of the structure and the impact velocity, which can be categorised into quasi-static mode, transition mode and dynamic mode. Parametric studies revealed that both the specific energy absorption and plateau stress of MH-celled structures are enhanced with the increase in the relative density or the impact velocity.
.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/addc25\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/addc25","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Lateral dynamic crushing of skeletal muscle-inspired hierarchical celled structures.
In this paper, a bionic structure made of skeletal muscle-inspired hierarchical (MH) unit cells is proposed. The mechanical properties and energy absorption characteristics of MH-celled structures with different geometric dimensions under various impact speeds were explored and compared with conventional circular-celled structures using finite element (FE) models in ABAQUS/Explicit. Quasi-static and dynamic tests were conducted to validate the FE modelling approach. Numerical crashworthiness analyses were performed, and the results demonstrate the higher energy absorption capability of MH-celled structures compared to the conventional circular-celled structure. Moreover, it was found that the deformation mode of MH-celled structures is governed by the relative density of the structure and the impact velocity, which can be categorised into quasi-static mode, transition mode and dynamic mode. Parametric studies revealed that both the specific energy absorption and plateau stress of MH-celled structures are enhanced with the increase in the relative density or the impact velocity.
.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.