Andre E Boyke, Simon A Menaker, Alberto Nunez, Keith L Black, Vladimir A Ljubimov
{"title":"空气污染与垂体腺瘤发病机制:揭示环境对神经内分泌功能和肿瘤发生的影响。","authors":"Andre E Boyke, Simon A Menaker, Alberto Nunez, Keith L Black, Vladimir A Ljubimov","doi":"10.3390/jox15030071","DOIUrl":null,"url":null,"abstract":"<p><p>Pituitary adenomas, although predominantly benign, can lead to significant clinical complications due to endocrine imbalances and mass effects on adjacent structures. Traditional research has focused on intrinsic factors like genetic mutations and hormonal dysregulation; however, emerging evidence implicates environmental pollutants-particularly urban air contaminants-in pituitary tumorigenesis. This review consolidates current findings on how chronic exposure to pollutants such as benzene, di(2-ethylhexyl) phthalate (DEHP), and polychlorinated biphenyls (PCBs) may trigger neuroinflammation, disrupt the hypothalamic-pituitary-adrenal (HPA) axis, and alter pituitary cell proliferation and hormone secretion. We explore mechanistic pathways involving inflammatory cytokines, oxidative stress, and microenvironmental modifications that contribute to neoplastic transformation and tumor progression. Epidemiological studies, supported by in vitro experiments, suggest that air pollutants not only initiate the development of pituitary adenomas but may also enhance the secretory activity of functioning tumors, potentially increasing their aggressiveness. Given the escalating global burden of air pollution and its far-reaching public health implications, further investigation is essential to elucidate these complex interactions. Advancing our understanding in this area could inform preventive strategies and therapeutic interventions aimed at mitigating the environmental impact on pituitary tumor behavior.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101421/pdf/","citationCount":"0","resultStr":"{\"title\":\"Air Pollution and Pituitary Adenoma Pathogenesis: Unraveling Environmental Impacts on Neuroendocrine Function and Tumorigenesis.\",\"authors\":\"Andre E Boyke, Simon A Menaker, Alberto Nunez, Keith L Black, Vladimir A Ljubimov\",\"doi\":\"10.3390/jox15030071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pituitary adenomas, although predominantly benign, can lead to significant clinical complications due to endocrine imbalances and mass effects on adjacent structures. Traditional research has focused on intrinsic factors like genetic mutations and hormonal dysregulation; however, emerging evidence implicates environmental pollutants-particularly urban air contaminants-in pituitary tumorigenesis. This review consolidates current findings on how chronic exposure to pollutants such as benzene, di(2-ethylhexyl) phthalate (DEHP), and polychlorinated biphenyls (PCBs) may trigger neuroinflammation, disrupt the hypothalamic-pituitary-adrenal (HPA) axis, and alter pituitary cell proliferation and hormone secretion. We explore mechanistic pathways involving inflammatory cytokines, oxidative stress, and microenvironmental modifications that contribute to neoplastic transformation and tumor progression. Epidemiological studies, supported by in vitro experiments, suggest that air pollutants not only initiate the development of pituitary adenomas but may also enhance the secretory activity of functioning tumors, potentially increasing their aggressiveness. Given the escalating global burden of air pollution and its far-reaching public health implications, further investigation is essential to elucidate these complex interactions. Advancing our understanding in this area could inform preventive strategies and therapeutic interventions aimed at mitigating the environmental impact on pituitary tumor behavior.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15030071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15030071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Air Pollution and Pituitary Adenoma Pathogenesis: Unraveling Environmental Impacts on Neuroendocrine Function and Tumorigenesis.
Pituitary adenomas, although predominantly benign, can lead to significant clinical complications due to endocrine imbalances and mass effects on adjacent structures. Traditional research has focused on intrinsic factors like genetic mutations and hormonal dysregulation; however, emerging evidence implicates environmental pollutants-particularly urban air contaminants-in pituitary tumorigenesis. This review consolidates current findings on how chronic exposure to pollutants such as benzene, di(2-ethylhexyl) phthalate (DEHP), and polychlorinated biphenyls (PCBs) may trigger neuroinflammation, disrupt the hypothalamic-pituitary-adrenal (HPA) axis, and alter pituitary cell proliferation and hormone secretion. We explore mechanistic pathways involving inflammatory cytokines, oxidative stress, and microenvironmental modifications that contribute to neoplastic transformation and tumor progression. Epidemiological studies, supported by in vitro experiments, suggest that air pollutants not only initiate the development of pituitary adenomas but may also enhance the secretory activity of functioning tumors, potentially increasing their aggressiveness. Given the escalating global burden of air pollution and its far-reaching public health implications, further investigation is essential to elucidate these complex interactions. Advancing our understanding in this area could inform preventive strategies and therapeutic interventions aimed at mitigating the environmental impact on pituitary tumor behavior.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.