Jorge Miguel Silva Faria, Ana Paula Pinto, Pedro Barrulas, Isabel Brito, Dora M Teixeira
{"title":"原生丛枝菌根真菌对锰毒土壤中小麦养分亚细胞分布的调节作用","authors":"Jorge Miguel Silva Faria, Ana Paula Pinto, Pedro Barrulas, Isabel Brito, Dora M Teixeira","doi":"10.3390/jox15030070","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy metal toxicity leads to impaired crop growth and reduced crop yields and product quality by disrupting plant nutrient uptake, inhibiting development, inducing oxidative stress, and causing cellular toxicity. Arbuscular mycorrhizal fungi (AMF) can play a crucial role in crops' adaptation to manganese (Mn) toxicity by regulating nutrient uptake and altering subcellular compartmentalization. The present study examines the influence of intact extraradical mycelia (ERMs) from native AMF on wheat (<i>Triticum aestivum</i>) grown in Mn-toxic soil, with a focus on the tissue-specific and subcellular Ca, Mg, P, and Mn distribution. Wheat cultivated in soil pre-colonized using an intact ERM associated with <i>Lolium rigidum</i> or <i>Ornithopus compressus</i> exhibited enhanced growth and improved P contents. During the first week of growth, the Mn concentrations increased in the wheat's roots and shoots, but Mn was subsequently reduced and sequestered within the cell wall. In contrast, in the absence of an intact ERM, the Mn accumulation in wheat followed an apparent continuous time-course pattern. AMF-mediated cell wall sequestration seems to contribute to Mn detoxification by limiting excessive cytoplasmic accumulation. Furthermore, AMF-driven changes in the element distribution suggest a dynamic response, wherein an early-stage nutrient uptake transitions into a long-term protective mechanism. These findings highlight the potential of AMF in mitigating Mn stress in crops, providing insights for sustainable agriculture and soil remediation strategies.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101392/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of Native Arbuscular Mycorrhizal Fungi in Modulating Nutrient Subcellular Distribution in Wheat Grown in Mn-Toxic Soil.\",\"authors\":\"Jorge Miguel Silva Faria, Ana Paula Pinto, Pedro Barrulas, Isabel Brito, Dora M Teixeira\",\"doi\":\"10.3390/jox15030070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heavy metal toxicity leads to impaired crop growth and reduced crop yields and product quality by disrupting plant nutrient uptake, inhibiting development, inducing oxidative stress, and causing cellular toxicity. Arbuscular mycorrhizal fungi (AMF) can play a crucial role in crops' adaptation to manganese (Mn) toxicity by regulating nutrient uptake and altering subcellular compartmentalization. The present study examines the influence of intact extraradical mycelia (ERMs) from native AMF on wheat (<i>Triticum aestivum</i>) grown in Mn-toxic soil, with a focus on the tissue-specific and subcellular Ca, Mg, P, and Mn distribution. Wheat cultivated in soil pre-colonized using an intact ERM associated with <i>Lolium rigidum</i> or <i>Ornithopus compressus</i> exhibited enhanced growth and improved P contents. During the first week of growth, the Mn concentrations increased in the wheat's roots and shoots, but Mn was subsequently reduced and sequestered within the cell wall. In contrast, in the absence of an intact ERM, the Mn accumulation in wheat followed an apparent continuous time-course pattern. AMF-mediated cell wall sequestration seems to contribute to Mn detoxification by limiting excessive cytoplasmic accumulation. Furthermore, AMF-driven changes in the element distribution suggest a dynamic response, wherein an early-stage nutrient uptake transitions into a long-term protective mechanism. These findings highlight the potential of AMF in mitigating Mn stress in crops, providing insights for sustainable agriculture and soil remediation strategies.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101392/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15030070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15030070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Role of Native Arbuscular Mycorrhizal Fungi in Modulating Nutrient Subcellular Distribution in Wheat Grown in Mn-Toxic Soil.
Heavy metal toxicity leads to impaired crop growth and reduced crop yields and product quality by disrupting plant nutrient uptake, inhibiting development, inducing oxidative stress, and causing cellular toxicity. Arbuscular mycorrhizal fungi (AMF) can play a crucial role in crops' adaptation to manganese (Mn) toxicity by regulating nutrient uptake and altering subcellular compartmentalization. The present study examines the influence of intact extraradical mycelia (ERMs) from native AMF on wheat (Triticum aestivum) grown in Mn-toxic soil, with a focus on the tissue-specific and subcellular Ca, Mg, P, and Mn distribution. Wheat cultivated in soil pre-colonized using an intact ERM associated with Lolium rigidum or Ornithopus compressus exhibited enhanced growth and improved P contents. During the first week of growth, the Mn concentrations increased in the wheat's roots and shoots, but Mn was subsequently reduced and sequestered within the cell wall. In contrast, in the absence of an intact ERM, the Mn accumulation in wheat followed an apparent continuous time-course pattern. AMF-mediated cell wall sequestration seems to contribute to Mn detoxification by limiting excessive cytoplasmic accumulation. Furthermore, AMF-driven changes in the element distribution suggest a dynamic response, wherein an early-stage nutrient uptake transitions into a long-term protective mechanism. These findings highlight the potential of AMF in mitigating Mn stress in crops, providing insights for sustainable agriculture and soil remediation strategies.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.