{"title":"恢复离散值域上多项式的聚类图。","authors":"Lilybelle Cowland Kellock","doi":"10.1098/rsos.242066","DOIUrl":null,"url":null,"abstract":"<p><p>For <math> <mstyle><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </mstyle> </math> , a separable polynomial of degree <math> <mstyle><mrow><mi>d</mi></mrow> </mstyle> </math> over a discretely valued field <math> <mstyle><mrow><mi>K</mi></mrow> </mstyle> </math> , we describe how the cluster picture of <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </math> over <math><mi>K</mi></math> , in other words, the set of tuples <math> <mstyle><mrow><mo>{</mo> <mo>(</mo> <mtext>ord</mtext> <mo>(</mo> <msub><mi>x</mi> <mrow><mi>i</mi></mrow> </msub> <mo>-</mo> <msub><mi>x</mi> <mrow><mi>j</mi></mrow> </msub> <mo>)</mo> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> <mo>:</mo> <mn>1</mn> <mo>≤</mo> <mi>i</mi> <mo><</mo> <mi>j</mi> <mo>≤</mo> <mi>d</mi> <mo>}</mo></mrow> </mstyle> </math> , where <math> <mrow><msub><mi>x</mi> <mn>1</mn></msub> <mo>,</mo></mrow> <mrow><mo>…</mo></mrow> <mrow><mo>,</mo></mrow> <mrow><msub><mi>x</mi> <mi>d</mi></msub> </mrow> </math> are the roots of <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </math> , can be recovered without knowing the roots of <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </math> over <math><mover><mi>K</mi> <mo>¯</mo></mover> </math> . We construct an explicit list of polynomials <math> <mrow><msubsup><mi>g</mi> <mi>d</mi> <mrow><mo>(</mo> <mn>1</mn> <mo>)</mo></mrow> </msubsup> <mo>,</mo></mrow> <mrow><mo>…</mo></mrow> <mrow><mo>,</mo></mrow> <mrow><msubsup><mi>g</mi> <mi>d</mi> <mrow><mo>(</mo> <msub><mi>t</mi> <mi>d</mi></msub> <mo>)</mo></mrow> </msubsup> <mo>∈</mo></mrow> <mrow><mi>ℤ</mi> <mo>[</mo> <msub><mi>A</mi> <mn>0</mn></msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>A</mi> <mrow><mi>d</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <mo>]</mo></mrow> </math> such that the valuations <math> <mstyle><mrow><mtext>ord</mtext> <mo>(</mo> <msubsup><mi>g</mi> <mrow><mi>d</mi></mrow> <mrow><mo>(</mo> <mi>i</mi> <mo>)</mo></mrow> </msubsup> <mo>(</mo> <msub><mi>a</mi> <mrow><mn>0</mn></mrow> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>a</mi> <mrow><mi>d</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <mo>)</mo> <mo>)</mo></mrow> </mstyle> </math> for <math><mrow><mi>i</mi> <mo>=</mo></mrow> <mrow><mn>1</mn> <mo>,</mo></mrow> <mrow><mo>…</mo></mrow> <mrow><mo>,</mo></mrow> <mrow><msub><mi>t</mi> <mi>d</mi></msub> </mrow> </math> uniquely determine this set of distances for the polynomial <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo></mrow> <mrow><msub><mi>c</mi> <mi>f</mi></msub> <mo>(</mo> <msup><mi>x</mi> <mi>d</mi></msup> <mo>+</mo> <msub><mi>a</mi> <mrow><mi>d</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <msup><mi>x</mi> <mrow><mi>d</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <mo>+</mo> <mo>⋯</mo> <mo>+</mo> <msub><mi>a</mi> <mn>0</mn></msub> <mo>)</mo></mrow> </math> , and we describe the process by which they do so. We use this to deduce that if <math><mrow><mi>C</mi> <mo>:</mo></mrow> <mrow><msup><mi>y</mi> <mn>2</mn></msup> <mo>=</mo></mrow> <mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </math> is a hyperelliptic curve over a local field <math><mi>K</mi></math> . This list of valuations of polynomials in the coefficients of <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </math> uniquely determines the dual graph of the special fibre of the minimal strict normal crossings model of <math> <mstyle><mrow><mi>C</mi> <mrow><mo>/</mo></mrow> <msup><mi>K</mi> <mrow><mrow><mi>u</mi> <mi>n</mi> <mi>r</mi></mrow> </mrow> </msup> </mrow> </mstyle> </math> , the inertia action on the Tate module and the conductor exponent. This provides a hyperelliptic curves analogue to a corollary of Tate's algorithm, that in residue characteristic <math><mrow><mi>p</mi> <mo>≥</mo></mrow> <mrow><mn>5</mn></mrow> </math> , the dual graph of special fibre of the minimal regular model of an elliptic curve <math> <mstyle><mrow><mi>E</mi> <mrow><mo>/</mo></mrow> <msup><mi>K</mi> <mrow><mrow><mi>u</mi> <mi>n</mi> <mi>r</mi></mrow> </mrow> </msup> </mrow> </mstyle> </math> is uniquely determined by the valuation of <math><msub><mi>j</mi> <mi>E</mi></msub> </math> and <math> <msub><mrow><mi>Δ</mi></mrow> <mi>E</mi></msub> </math> .</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 5","pages":"242066"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recovering the cluster picture of a polynomial over a discretely valued field.\",\"authors\":\"Lilybelle Cowland Kellock\",\"doi\":\"10.1098/rsos.242066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For <math> <mstyle><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </mstyle> </math> , a separable polynomial of degree <math> <mstyle><mrow><mi>d</mi></mrow> </mstyle> </math> over a discretely valued field <math> <mstyle><mrow><mi>K</mi></mrow> </mstyle> </math> , we describe how the cluster picture of <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </math> over <math><mi>K</mi></math> , in other words, the set of tuples <math> <mstyle><mrow><mo>{</mo> <mo>(</mo> <mtext>ord</mtext> <mo>(</mo> <msub><mi>x</mi> <mrow><mi>i</mi></mrow> </msub> <mo>-</mo> <msub><mi>x</mi> <mrow><mi>j</mi></mrow> </msub> <mo>)</mo> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> <mo>:</mo> <mn>1</mn> <mo>≤</mo> <mi>i</mi> <mo><</mo> <mi>j</mi> <mo>≤</mo> <mi>d</mi> <mo>}</mo></mrow> </mstyle> </math> , where <math> <mrow><msub><mi>x</mi> <mn>1</mn></msub> <mo>,</mo></mrow> <mrow><mo>…</mo></mrow> <mrow><mo>,</mo></mrow> <mrow><msub><mi>x</mi> <mi>d</mi></msub> </mrow> </math> are the roots of <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </math> , can be recovered without knowing the roots of <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </math> over <math><mover><mi>K</mi> <mo>¯</mo></mover> </math> . We construct an explicit list of polynomials <math> <mrow><msubsup><mi>g</mi> <mi>d</mi> <mrow><mo>(</mo> <mn>1</mn> <mo>)</mo></mrow> </msubsup> <mo>,</mo></mrow> <mrow><mo>…</mo></mrow> <mrow><mo>,</mo></mrow> <mrow><msubsup><mi>g</mi> <mi>d</mi> <mrow><mo>(</mo> <msub><mi>t</mi> <mi>d</mi></msub> <mo>)</mo></mrow> </msubsup> <mo>∈</mo></mrow> <mrow><mi>ℤ</mi> <mo>[</mo> <msub><mi>A</mi> <mn>0</mn></msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>A</mi> <mrow><mi>d</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <mo>]</mo></mrow> </math> such that the valuations <math> <mstyle><mrow><mtext>ord</mtext> <mo>(</mo> <msubsup><mi>g</mi> <mrow><mi>d</mi></mrow> <mrow><mo>(</mo> <mi>i</mi> <mo>)</mo></mrow> </msubsup> <mo>(</mo> <msub><mi>a</mi> <mrow><mn>0</mn></mrow> </msub> <mo>,</mo> <mo>…</mo> <mo>,</mo> <msub><mi>a</mi> <mrow><mi>d</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <mo>)</mo> <mo>)</mo></mrow> </mstyle> </math> for <math><mrow><mi>i</mi> <mo>=</mo></mrow> <mrow><mn>1</mn> <mo>,</mo></mrow> <mrow><mo>…</mo></mrow> <mrow><mo>,</mo></mrow> <mrow><msub><mi>t</mi> <mi>d</mi></msub> </mrow> </math> uniquely determine this set of distances for the polynomial <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>=</mo></mrow> <mrow><msub><mi>c</mi> <mi>f</mi></msub> <mo>(</mo> <msup><mi>x</mi> <mi>d</mi></msup> <mo>+</mo> <msub><mi>a</mi> <mrow><mi>d</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <msup><mi>x</mi> <mrow><mi>d</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <mo>+</mo> <mo>⋯</mo> <mo>+</mo> <msub><mi>a</mi> <mn>0</mn></msub> <mo>)</mo></mrow> </math> , and we describe the process by which they do so. We use this to deduce that if <math><mrow><mi>C</mi> <mo>:</mo></mrow> <mrow><msup><mi>y</mi> <mn>2</mn></msup> <mo>=</mo></mrow> <mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </math> is a hyperelliptic curve over a local field <math><mi>K</mi></math> . This list of valuations of polynomials in the coefficients of <math><mrow><mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> </math> uniquely determines the dual graph of the special fibre of the minimal strict normal crossings model of <math> <mstyle><mrow><mi>C</mi> <mrow><mo>/</mo></mrow> <msup><mi>K</mi> <mrow><mrow><mi>u</mi> <mi>n</mi> <mi>r</mi></mrow> </mrow> </msup> </mrow> </mstyle> </math> , the inertia action on the Tate module and the conductor exponent. This provides a hyperelliptic curves analogue to a corollary of Tate's algorithm, that in residue characteristic <math><mrow><mi>p</mi> <mo>≥</mo></mrow> <mrow><mn>5</mn></mrow> </math> , the dual graph of special fibre of the minimal regular model of an elliptic curve <math> <mstyle><mrow><mi>E</mi> <mrow><mo>/</mo></mrow> <msup><mi>K</mi> <mrow><mrow><mi>u</mi> <mi>n</mi> <mi>r</mi></mrow> </mrow> </msup> </mrow> </mstyle> </math> is uniquely determined by the valuation of <math><msub><mi>j</mi> <mi>E</mi></msub> </math> and <math> <msub><mrow><mi>Δ</mi></mrow> <mi>E</mi></msub> </math> .</p>\",\"PeriodicalId\":21525,\"journal\":{\"name\":\"Royal Society Open Science\",\"volume\":\"12 5\",\"pages\":\"242066\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Royal Society Open Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsos.242066\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.242066","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
f (x),分离度的多项式K d /一个离散值字段,我们描述了集群的f (x) / K,换句话说,元组的集合{(奥德(i - x j), i, j): 1≤我j d≤},其中x 1,…,x d f (x)的根源,可以恢复不知道f (x) / K¯的根源。我们构建一个显式的多项式g d(列表1所示 ) , ... , g d d (t)∈ℤ[0,…,d - 1]这样估值奥德(g d(我)(0 , ... , d - 1))我= 1,…,t d唯一确定这个集合的距离多项式f (x) = c f (x + d - 1 x d - 1 +⋯+ 0),和我们描述的过程。我们用它来推导如果C: y 2 = f (x)是局部场K上的超椭圆曲线。f (x)系数中多项式值的列表唯一地决定了C / K un r的最小严格法向交叉模型的特殊纤维的对偶图,对Tate模块和导体指数的惯性作用。这提供了一个超椭圆曲线类比于Tate算法的一个推论,即在残差特征p≥5时,椭圆曲线E / K un r的最小正则模型的特殊纤维对偶图唯一地由j E和Δ E的值决定。
Recovering the cluster picture of a polynomial over a discretely valued field.
For , a separable polynomial of degree over a discretely valued field , we describe how the cluster picture of over , in other words, the set of tuples , where are the roots of , can be recovered without knowing the roots of over . We construct an explicit list of polynomials such that the valuations for uniquely determine this set of distances for the polynomial , and we describe the process by which they do so. We use this to deduce that if is a hyperelliptic curve over a local field . This list of valuations of polynomials in the coefficients of uniquely determines the dual graph of the special fibre of the minimal strict normal crossings model of , the inertia action on the Tate module and the conductor exponent. This provides a hyperelliptic curves analogue to a corollary of Tate's algorithm, that in residue characteristic , the dual graph of special fibre of the minimal regular model of an elliptic curve is uniquely determined by the valuation of and .
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.