研究有毒金属与心血管疾病必需元素的相互作用。

IF 6.8 Q1 TOXICOLOGY
Aderonke Gbemi Adetunji, Emmanuel Obeng-Gyasi
{"title":"研究有毒金属与心血管疾病必需元素的相互作用。","authors":"Aderonke Gbemi Adetunji, Emmanuel Obeng-Gyasi","doi":"10.3390/jox15030068","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs) are the leading cause of mortality globally, accounting for approximately one-third of all deaths. Exposure to toxic metals poses significant risks to cardiovascular health, contributing to the development of CVDs. Essential elements are crucial for maintaining cardiovascular function; however, imbalances or deficiencies in these elements can exacerbate the risk and progression of CVDs. Understanding the interactions between toxic metals and essential elements is crucial for elucidating their impact on cardiovascular health. This study aims to examine the individual and combined effects of toxic metals-lead (Pb), cadmium (Cd), and mercury (Hg)-along with essential elements-manganese (Mn), iron (Fe), and selenium (Se)-on CVDs. We explored the effects of toxic metals and essential elements using data from the National Health and Nutrition Examination Survey (NHANES, 2017-2018). We conducted descriptive analyses and applied advanced statistical methods, including Bayesian kernel machine regression (BKMR), weighted quantile sum regression (WQSR), and quantile g-computation, to assess the associations between these toxic metals and essential elements on key cardiovascular-related biomarkers. The results revealed distinct patterns of influence across the toxic metals and essential elements. Spearman correlation showed a stronger association among toxic metals than essential elements. Bayesian kernel machine regression (BKMR) and posterior inclusion probability (PIP) analysis identified lead, mercury, iron, and selenium as key contributors to CVD risk, with lead strongly linked to high-density lipoprotein (HDL), diastolic blood pressure (DBP), and systolic blood pressure (SBP). Selenium was linked to low-density lipoprotein (LDL) cholesterol and non-high-density lipoprotein (non-HDL) cholesterol. Univariate and bivariate analyses confirmed lead and mercury's strong associations with triglycerides and blood pressure, while lead, selenium, and iron were linked to different cholesterol outcomes. Single-variable analysis revealed an interaction between individual exposures and combined exposures. The overall exposure effect assessing the impact of all exposures combined on CVD markers revealed a steady positive association with triglycerides, total cholesterol, LDL, non-HDL cholesterol, and DBP, with HDL and SBP increasing from the 65th percentile. Quantile g-computation and WQSR confirmed lead's consistent positive association across all outcomes, with variations among other toxic metals and essential elements. In conclusion, our study suggests that toxic metals and essential elements are important factors in CVD outcomes, with different metals and elements associated with variations in specific biomarkers.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101410/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the Interplay of Toxic Metals and Essential Elements in Cardiovascular Disease.\",\"authors\":\"Aderonke Gbemi Adetunji, Emmanuel Obeng-Gyasi\",\"doi\":\"10.3390/jox15030068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular diseases (CVDs) are the leading cause of mortality globally, accounting for approximately one-third of all deaths. Exposure to toxic metals poses significant risks to cardiovascular health, contributing to the development of CVDs. Essential elements are crucial for maintaining cardiovascular function; however, imbalances or deficiencies in these elements can exacerbate the risk and progression of CVDs. Understanding the interactions between toxic metals and essential elements is crucial for elucidating their impact on cardiovascular health. This study aims to examine the individual and combined effects of toxic metals-lead (Pb), cadmium (Cd), and mercury (Hg)-along with essential elements-manganese (Mn), iron (Fe), and selenium (Se)-on CVDs. We explored the effects of toxic metals and essential elements using data from the National Health and Nutrition Examination Survey (NHANES, 2017-2018). We conducted descriptive analyses and applied advanced statistical methods, including Bayesian kernel machine regression (BKMR), weighted quantile sum regression (WQSR), and quantile g-computation, to assess the associations between these toxic metals and essential elements on key cardiovascular-related biomarkers. The results revealed distinct patterns of influence across the toxic metals and essential elements. Spearman correlation showed a stronger association among toxic metals than essential elements. Bayesian kernel machine regression (BKMR) and posterior inclusion probability (PIP) analysis identified lead, mercury, iron, and selenium as key contributors to CVD risk, with lead strongly linked to high-density lipoprotein (HDL), diastolic blood pressure (DBP), and systolic blood pressure (SBP). Selenium was linked to low-density lipoprotein (LDL) cholesterol and non-high-density lipoprotein (non-HDL) cholesterol. Univariate and bivariate analyses confirmed lead and mercury's strong associations with triglycerides and blood pressure, while lead, selenium, and iron were linked to different cholesterol outcomes. Single-variable analysis revealed an interaction between individual exposures and combined exposures. The overall exposure effect assessing the impact of all exposures combined on CVD markers revealed a steady positive association with triglycerides, total cholesterol, LDL, non-HDL cholesterol, and DBP, with HDL and SBP increasing from the 65th percentile. Quantile g-computation and WQSR confirmed lead's consistent positive association across all outcomes, with variations among other toxic metals and essential elements. In conclusion, our study suggests that toxic metals and essential elements are important factors in CVD outcomes, with different metals and elements associated with variations in specific biomarkers.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101410/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15030068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15030068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病是全球死亡的主要原因,约占所有死亡人数的三分之一。接触有毒金属对心血管健康构成重大风险,有助于心血管疾病的发展。必需元素对维持心血管功能至关重要;然而,这些元素的失衡或缺乏会加剧心血管疾病的风险和进展。了解有毒金属和基本元素之间的相互作用对于阐明它们对心血管健康的影响至关重要。本研究旨在研究有毒金属——铅(Pb)、镉(Cd)和汞(Hg)——以及必需元素——锰(Mn)、铁(Fe)和硒(Se)——对心血管疾病的单独和综合影响。我们利用国家健康与营养检查调查(NHANES, 2017-2018)的数据探讨了有毒金属和必需元素的影响。我们进行了描述性分析,并应用了先进的统计方法,包括贝叶斯核机回归(BKMR)、加权分位数和回归(WQSR)和分位数g计算,以评估这些有毒金属与关键心血管相关生物标志物上必需元素之间的关联。结果揭示了有毒金属和基本元素的不同影响模式。斯皮尔曼相关性表明,有毒金属之间的相关性强于必需元素之间的相关性。贝叶斯核机回归(BKMR)和后验包合概率(PIP)分析确定铅、汞、铁和硒是心血管疾病风险的关键因素,铅与高密度脂蛋白(HDL)、舒张压(DBP)和收缩压(SBP)密切相关。硒与低密度脂蛋白(LDL)胆固醇和非高密度脂蛋白(non-HDL)胆固醇有关。单变量和双变量分析证实,铅和汞与甘油三酯和血压密切相关,而铅、硒和铁与不同的胆固醇结果有关。单变量分析揭示了个体暴露与组合暴露之间的相互作用。评估所有暴露对CVD标志物的影响的总体暴露效应显示,甘油三酯、总胆固醇、低密度脂蛋白、非高密度脂蛋白胆固醇和舒张压之间存在稳定的正相关,HDL和收缩压从第65百分位开始增加。分位数g计算和WQSR证实,铅在所有结果中都是一致的正相关,其他有毒金属和基本元素之间存在差异。总之,我们的研究表明,有毒金属和必需元素是心血管疾病结局的重要因素,不同的金属和元素与特定生物标志物的变化有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Interplay of Toxic Metals and Essential Elements in Cardiovascular Disease.

Cardiovascular diseases (CVDs) are the leading cause of mortality globally, accounting for approximately one-third of all deaths. Exposure to toxic metals poses significant risks to cardiovascular health, contributing to the development of CVDs. Essential elements are crucial for maintaining cardiovascular function; however, imbalances or deficiencies in these elements can exacerbate the risk and progression of CVDs. Understanding the interactions between toxic metals and essential elements is crucial for elucidating their impact on cardiovascular health. This study aims to examine the individual and combined effects of toxic metals-lead (Pb), cadmium (Cd), and mercury (Hg)-along with essential elements-manganese (Mn), iron (Fe), and selenium (Se)-on CVDs. We explored the effects of toxic metals and essential elements using data from the National Health and Nutrition Examination Survey (NHANES, 2017-2018). We conducted descriptive analyses and applied advanced statistical methods, including Bayesian kernel machine regression (BKMR), weighted quantile sum regression (WQSR), and quantile g-computation, to assess the associations between these toxic metals and essential elements on key cardiovascular-related biomarkers. The results revealed distinct patterns of influence across the toxic metals and essential elements. Spearman correlation showed a stronger association among toxic metals than essential elements. Bayesian kernel machine regression (BKMR) and posterior inclusion probability (PIP) analysis identified lead, mercury, iron, and selenium as key contributors to CVD risk, with lead strongly linked to high-density lipoprotein (HDL), diastolic blood pressure (DBP), and systolic blood pressure (SBP). Selenium was linked to low-density lipoprotein (LDL) cholesterol and non-high-density lipoprotein (non-HDL) cholesterol. Univariate and bivariate analyses confirmed lead and mercury's strong associations with triglycerides and blood pressure, while lead, selenium, and iron were linked to different cholesterol outcomes. Single-variable analysis revealed an interaction between individual exposures and combined exposures. The overall exposure effect assessing the impact of all exposures combined on CVD markers revealed a steady positive association with triglycerides, total cholesterol, LDL, non-HDL cholesterol, and DBP, with HDL and SBP increasing from the 65th percentile. Quantile g-computation and WQSR confirmed lead's consistent positive association across all outcomes, with variations among other toxic metals and essential elements. In conclusion, our study suggests that toxic metals and essential elements are important factors in CVD outcomes, with different metals and elements associated with variations in specific biomarkers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信