Diana M. Hendrickx, Mariyana V. Savova, Pingping Zhu, Ran An, Sjef Boeren, Kelly Klomp, Sumanth K. Mutte, PRESTO study team, Harm Wopereis, Renate G. van der Molen, Amy C. Harms and Clara Belzer
{"title":"儿童牛奶过敏生长的多组学机器学习分类器。","authors":"Diana M. Hendrickx, Mariyana V. Savova, Pingping Zhu, Ran An, Sjef Boeren, Kelly Klomp, Sumanth K. Mutte, PRESTO study team, Harm Wopereis, Renate G. van der Molen, Amy C. Harms and Clara Belzer","doi":"10.1039/D4MO00245H","DOIUrl":null,"url":null,"abstract":"<p >Cow's milk protein allergy (CMA) is one of the most common food allergies in children worldwide. However, it is still not well understood why certain children outgrow their CMA and others do not. While there is increasing evidence for a link of CMA with the gut microbiome, it is still unclear how the gut microbiome and metabolome interact with the immune system. Integrating data from different omics platforms and clinical data can help to unravel these interactions. In this study, we integrate clinical, microbial, (meta)proteomics, immune and metabolomics data into machine learning (ML) classification, using multi-view learning by late integration. The aim is to group infants into those that outgrew their CMA and those that did not. The results show that integration of microbiome data with clinical, immune, (meta)proteomics and metabolomics data could considerably improve classification of infants on outgrowth of CMA, compared to only considering one type of data. Moreover, pathways previously linked to development of CMA could also be related to outgrowth of this allergy.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 4","pages":" 343-352"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101220/pdf/","citationCount":"0","resultStr":"{\"title\":\"A multi-omics machine learning classifier for outgrowth of cow's milk allergy in children†\",\"authors\":\"Diana M. Hendrickx, Mariyana V. Savova, Pingping Zhu, Ran An, Sjef Boeren, Kelly Klomp, Sumanth K. Mutte, PRESTO study team, Harm Wopereis, Renate G. van der Molen, Amy C. Harms and Clara Belzer\",\"doi\":\"10.1039/D4MO00245H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cow's milk protein allergy (CMA) is one of the most common food allergies in children worldwide. However, it is still not well understood why certain children outgrow their CMA and others do not. While there is increasing evidence for a link of CMA with the gut microbiome, it is still unclear how the gut microbiome and metabolome interact with the immune system. Integrating data from different omics platforms and clinical data can help to unravel these interactions. In this study, we integrate clinical, microbial, (meta)proteomics, immune and metabolomics data into machine learning (ML) classification, using multi-view learning by late integration. The aim is to group infants into those that outgrew their CMA and those that did not. The results show that integration of microbiome data with clinical, immune, (meta)proteomics and metabolomics data could considerably improve classification of infants on outgrowth of CMA, compared to only considering one type of data. Moreover, pathways previously linked to development of CMA could also be related to outgrowth of this allergy.</p>\",\"PeriodicalId\":19065,\"journal\":{\"name\":\"Molecular omics\",\"volume\":\" 4\",\"pages\":\" 343-352\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101220/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular omics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mo/d4mo00245h\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mo/d4mo00245h","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A multi-omics machine learning classifier for outgrowth of cow's milk allergy in children†
Cow's milk protein allergy (CMA) is one of the most common food allergies in children worldwide. However, it is still not well understood why certain children outgrow their CMA and others do not. While there is increasing evidence for a link of CMA with the gut microbiome, it is still unclear how the gut microbiome and metabolome interact with the immune system. Integrating data from different omics platforms and clinical data can help to unravel these interactions. In this study, we integrate clinical, microbial, (meta)proteomics, immune and metabolomics data into machine learning (ML) classification, using multi-view learning by late integration. The aim is to group infants into those that outgrew their CMA and those that did not. The results show that integration of microbiome data with clinical, immune, (meta)proteomics and metabolomics data could considerably improve classification of infants on outgrowth of CMA, compared to only considering one type of data. Moreover, pathways previously linked to development of CMA could also be related to outgrowth of this allergy.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.