基于生成位移映射的无参考自旋回波回波平面成像畸变降低。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Chung-Chin Kuo, Teng-Yi Huang, Yi-Ru Lin, Tzu-Chao Chuang, Shang-Yueh Tsai, Ming-Long Wu, Hsiao-Wen Chung
{"title":"基于生成位移映射的无参考自旋回波回波平面成像畸变降低。","authors":"Chung-Chin Kuo, Teng-Yi Huang, Yi-Ru Lin, Tzu-Chao Chuang, Shang-Yueh Tsai, Ming-Long Wu, Hsiao-Wen Chung","doi":"10.1002/mrm.30577","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aimed to develop a fully automatic, referenceless method for correcting distortions in echo-planar imaging (EPI) data sets, specifically designed for applications in retrospective studies lacking reference field maps or reversed-gradient scans. This work primarily targets data sets acquired with anterior-posterior or posterior-anterior phase-encoding protocols.</p><p><strong>Methods: </strong>Our approach used a generative adversarial network to generate a displacement map. The network model took a three-dimensional raw b0 volume from a diffusion-tensor data set as input and reproduced a displacement map, similar to that originally derived using a reversed-gradient correction method. This generative displacement map was used to correct echo-planar images across an entire diffusion data set.</p><p><strong>Results: </strong>The performance of our method was evaluated across multiple institutions using large-scale databases. We found that it effectively reduced geometric distortions in EPI data sets and improved the accuracy of diffusion indices. Moreover, it significantly enhanced the coregistration between EPI and high-resolution T<sub>1</sub>-weighted images (p < 0.01).</p><p><strong>Conclusions: </strong>Our referenceless EPI distortion correction method has been publicly shared as a standalone application and offers a practical solution for enhancing the quality of EPI data sets in retrospective studies. It effectively reduces distortions and increases the accuracy of diffusion measures, making it a valuable tool for studies where EPI data contain no distortion calibration scan.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Referenceless reduction of spin-echo echo-planar imaging distortion with generative displacement mapping.\",\"authors\":\"Chung-Chin Kuo, Teng-Yi Huang, Yi-Ru Lin, Tzu-Chao Chuang, Shang-Yueh Tsai, Ming-Long Wu, Hsiao-Wen Chung\",\"doi\":\"10.1002/mrm.30577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>We aimed to develop a fully automatic, referenceless method for correcting distortions in echo-planar imaging (EPI) data sets, specifically designed for applications in retrospective studies lacking reference field maps or reversed-gradient scans. This work primarily targets data sets acquired with anterior-posterior or posterior-anterior phase-encoding protocols.</p><p><strong>Methods: </strong>Our approach used a generative adversarial network to generate a displacement map. The network model took a three-dimensional raw b0 volume from a diffusion-tensor data set as input and reproduced a displacement map, similar to that originally derived using a reversed-gradient correction method. This generative displacement map was used to correct echo-planar images across an entire diffusion data set.</p><p><strong>Results: </strong>The performance of our method was evaluated across multiple institutions using large-scale databases. We found that it effectively reduced geometric distortions in EPI data sets and improved the accuracy of diffusion indices. Moreover, it significantly enhanced the coregistration between EPI and high-resolution T<sub>1</sub>-weighted images (p < 0.01).</p><p><strong>Conclusions: </strong>Our referenceless EPI distortion correction method has been publicly shared as a standalone application and offers a practical solution for enhancing the quality of EPI data sets in retrospective studies. It effectively reduces distortions and increases the accuracy of diffusion measures, making it a valuable tool for studies where EPI data contain no distortion calibration scan.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30577\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30577","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们的目标是开发一种全自动、无参考的方法来纠正回波平面成像(EPI)数据集的畸变,专门设计用于缺乏参考场图或反梯度扫描的回顾性研究。这项工作主要针对通过前后或前后相位编码协议获得的数据集。方法:我们的方法使用生成对抗网络来生成位移图。该网络模型以扩散张量数据集中的三维原始b0体作为输入,并复制了一个位移图,类似于最初使用反梯度校正方法导出的位移图。该生成位移图用于校正整个扩散数据集的回波平面图像。结果:我们的方法在多个机构中使用大型数据库进行了性能评估。我们发现它有效地减少了EPI数据集的几何畸变,提高了扩散指数的准确性。此外,它还显著增强了EPI与高分辨率t1加权图像之间的共配准(p)。结论:我们的无参考EPI失真校正方法已经作为一个独立的应用程序公开共享,为提高回顾性研究中EPI数据集的质量提供了一个实用的解决方案。它有效地减少了失真,提高了扩散测量的准确性,使其成为EPI数据不包含失真校准扫描的研究的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Referenceless reduction of spin-echo echo-planar imaging distortion with generative displacement mapping.

Purpose: We aimed to develop a fully automatic, referenceless method for correcting distortions in echo-planar imaging (EPI) data sets, specifically designed for applications in retrospective studies lacking reference field maps or reversed-gradient scans. This work primarily targets data sets acquired with anterior-posterior or posterior-anterior phase-encoding protocols.

Methods: Our approach used a generative adversarial network to generate a displacement map. The network model took a three-dimensional raw b0 volume from a diffusion-tensor data set as input and reproduced a displacement map, similar to that originally derived using a reversed-gradient correction method. This generative displacement map was used to correct echo-planar images across an entire diffusion data set.

Results: The performance of our method was evaluated across multiple institutions using large-scale databases. We found that it effectively reduced geometric distortions in EPI data sets and improved the accuracy of diffusion indices. Moreover, it significantly enhanced the coregistration between EPI and high-resolution T1-weighted images (p < 0.01).

Conclusions: Our referenceless EPI distortion correction method has been publicly shared as a standalone application and offers a practical solution for enhancing the quality of EPI data sets in retrospective studies. It effectively reduces distortions and increases the accuracy of diffusion measures, making it a valuable tool for studies where EPI data contain no distortion calibration scan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信