优化人工智能裂缝检测能力:从盲点到突破。

IF 2.2 3区 医学 Q2 ORTHOPEDICS
Skeletal Radiology Pub Date : 2025-10-01 Epub Date: 2025-05-23 DOI:10.1007/s00256-025-04951-0
Shima Behzad, Liesl Eibschutz, Max Yang Lu, Ali Gholamrezanezhad
{"title":"优化人工智能裂缝检测能力:从盲点到突破。","authors":"Shima Behzad, Liesl Eibschutz, Max Yang Lu, Ali Gholamrezanezhad","doi":"10.1007/s00256-025-04951-0","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial Intelligence (AI) is increasingly being integrated into the field of musculoskeletal (MSK) radiology, from research methods to routine clinical practice. Within the field of fracture detection, AI is allowing for precision and speed previously unimaginable. Yet, AI's decision-making processes are sometimes wrought with deficiencies, undermining trust, hindering accountability, and compromising diagnostic precision. To make AI a trusted ally for radiologists, we recommend incorporating clinical history, rationalizing AI decisions by explainable AI (XAI) techniques, increasing the variety and scale of training data to approach the complexity of a clinical situation, and active interactions between clinicians and developers. By bridging these gaps, the true potential of AI can be unlocked, enhancing patient outcomes and fundamentally transforming radiology through a harmonious integration of human expertise and intelligent technology. In this article, we aim to examine the factors contributing to AI inaccuracies and offer recommendations to address these challenges-benefiting both radiologists and developers striving to improve future algorithms.</p>","PeriodicalId":21783,"journal":{"name":"Skeletal Radiology","volume":" ","pages":"2007-2024"},"PeriodicalIF":2.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the power of AI for fracture detection: from blind spots to breakthroughs.\",\"authors\":\"Shima Behzad, Liesl Eibschutz, Max Yang Lu, Ali Gholamrezanezhad\",\"doi\":\"10.1007/s00256-025-04951-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial Intelligence (AI) is increasingly being integrated into the field of musculoskeletal (MSK) radiology, from research methods to routine clinical practice. Within the field of fracture detection, AI is allowing for precision and speed previously unimaginable. Yet, AI's decision-making processes are sometimes wrought with deficiencies, undermining trust, hindering accountability, and compromising diagnostic precision. To make AI a trusted ally for radiologists, we recommend incorporating clinical history, rationalizing AI decisions by explainable AI (XAI) techniques, increasing the variety and scale of training data to approach the complexity of a clinical situation, and active interactions between clinicians and developers. By bridging these gaps, the true potential of AI can be unlocked, enhancing patient outcomes and fundamentally transforming radiology through a harmonious integration of human expertise and intelligent technology. In this article, we aim to examine the factors contributing to AI inaccuracies and offer recommendations to address these challenges-benefiting both radiologists and developers striving to improve future algorithms.</p>\",\"PeriodicalId\":21783,\"journal\":{\"name\":\"Skeletal Radiology\",\"volume\":\" \",\"pages\":\"2007-2024\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skeletal Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00256-025-04951-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00256-025-04951-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

从研究方法到常规临床实践,人工智能(AI)越来越多地融入肌肉骨骼(MSK)放射学领域。在裂缝检测领域,人工智能可以实现以前难以想象的精度和速度。然而,人工智能的决策过程有时存在缺陷,破坏了信任,阻碍了问责制,损害了诊断的准确性。为了使人工智能成为放射科医生值得信赖的盟友,我们建议将临床病史纳入其中,通过可解释的人工智能(XAI)技术使人工智能决策合理化,增加培训数据的种类和规模,以接近临床情况的复杂性,以及临床医生和开发人员之间的积极互动。通过弥合这些差距,可以释放人工智能的真正潜力,提高患者的治疗效果,并通过人类专业知识和智能技术的和谐融合,从根本上改变放射学。在本文中,我们旨在研究导致人工智能不准确性的因素,并提供解决这些挑战的建议,从而使放射科医生和努力改进未来算法的开发人员都受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the power of AI for fracture detection: from blind spots to breakthroughs.

Artificial Intelligence (AI) is increasingly being integrated into the field of musculoskeletal (MSK) radiology, from research methods to routine clinical practice. Within the field of fracture detection, AI is allowing for precision and speed previously unimaginable. Yet, AI's decision-making processes are sometimes wrought with deficiencies, undermining trust, hindering accountability, and compromising diagnostic precision. To make AI a trusted ally for radiologists, we recommend incorporating clinical history, rationalizing AI decisions by explainable AI (XAI) techniques, increasing the variety and scale of training data to approach the complexity of a clinical situation, and active interactions between clinicians and developers. By bridging these gaps, the true potential of AI can be unlocked, enhancing patient outcomes and fundamentally transforming radiology through a harmonious integration of human expertise and intelligent technology. In this article, we aim to examine the factors contributing to AI inaccuracies and offer recommendations to address these challenges-benefiting both radiologists and developers striving to improve future algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Skeletal Radiology
Skeletal Radiology 医学-核医学
CiteScore
4.40
自引率
9.50%
发文量
253
审稿时长
3-8 weeks
期刊介绍: Skeletal Radiology provides a forum for the dissemination of current knowledge and information dealing with disorders of the musculoskeletal system including the spine. While emphasizing the radiological aspects of the many varied skeletal abnormalities, the journal also adopts an interdisciplinary approach, reflecting the membership of the International Skeletal Society. Thus, the anatomical, pathological, physiological, clinical, metabolic and epidemiological aspects of the many entities affecting the skeleton receive appropriate consideration. This is the Journal of the International Skeletal Society and the Official Journal of the Society of Skeletal Radiology and the Australasian Musculoskelelal Imaging Group.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信