{"title":"多组学分析显示乳酸菌和吲哚乳酸参与了短肠综合征仔猪的小肠适应。","authors":"Weipeng Wang, Ying Lu, Bo Wu, Shicheng Peng, Wei Cai, Yongtao Xiao","doi":"10.1186/s12986-025-00938-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Short bowel syndrome (SBS) is a condition characterized by malabsorption that occurs when a patient loses a significant amount of bowel length or function, often necessitating lifelong parenteral nutrition support. This study utilized multi-omics analysis to investigate alterations in gut microbiota, metabolism, and transcriptome during the progression of intestinal adaptation in SBS using a piglet model.</p><p><strong>Methods: </strong>We established a model of SBS in Bama mini piglets by performing a 75% jejunoileal resection. Fifteen piglets were randomized into EN, PN, and PN-SBS groups. Fecal samples were collected for 16 S rRNA gene-based microbiota analysis. Ileal mucosa and serum were collected for untargeted liquid chromatography-mass spectrometry. Transcriptomic analysis on ileal mucosa was performed.</p><p><strong>Results: </strong>The PN-SBS model was established in the newborn piglets. A significant decrease in species-level diversity was observed in piglets with SBS, accompanied by alterations in their microbiome compositions. The beneficial anaerobes from Bacillota and Bacteroidota were depleted while microorganisms from Verrucomicrobiota and Fusobacteriota were enriched in feces from SBS piglets. The dysregulation of metabolites and metabolic pathways was observed in the metabolic profiles of ileal mucosa and serum in SBS piglets. Indolelactic acid (ILA) levels were found to be reduced in the ileal mucosa and serum of SBS piglets. Transcriptomic analysis revealed an extensive functional alteration in SBS, primarily manifested as metabolic changes and intestinal proliferation. The multi-omics analysis revealed that the decreased abundance of Lactobacillus may result in a diminished production of their metabolite ILA, thereby influencing intestinal proliferation and anti-inflammatory responses.</p><p><strong>Conclusion: </strong>Disrupted homeostasis of gut microbiota, metabolism, and transcriptome were reported in the SBS piglets. Multi-omics analysis demonstrated Lactobacillus and its metabolite ILA may be involved in small intestinal adaptation of SBS. These alterations may contribute to the proinflammatory state and the delay of intestinal adaptation in SBS, which in turn provide promising targets for therapies.</p>","PeriodicalId":19196,"journal":{"name":"Nutrition & Metabolism","volume":"22 1","pages":"47"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096513/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-omics analysis reveals Lactobacillus and Indolelactic acid involved in small intestinal adaptation of piglet with short bowel syndrome.\",\"authors\":\"Weipeng Wang, Ying Lu, Bo Wu, Shicheng Peng, Wei Cai, Yongtao Xiao\",\"doi\":\"10.1186/s12986-025-00938-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Short bowel syndrome (SBS) is a condition characterized by malabsorption that occurs when a patient loses a significant amount of bowel length or function, often necessitating lifelong parenteral nutrition support. This study utilized multi-omics analysis to investigate alterations in gut microbiota, metabolism, and transcriptome during the progression of intestinal adaptation in SBS using a piglet model.</p><p><strong>Methods: </strong>We established a model of SBS in Bama mini piglets by performing a 75% jejunoileal resection. Fifteen piglets were randomized into EN, PN, and PN-SBS groups. Fecal samples were collected for 16 S rRNA gene-based microbiota analysis. Ileal mucosa and serum were collected for untargeted liquid chromatography-mass spectrometry. Transcriptomic analysis on ileal mucosa was performed.</p><p><strong>Results: </strong>The PN-SBS model was established in the newborn piglets. A significant decrease in species-level diversity was observed in piglets with SBS, accompanied by alterations in their microbiome compositions. The beneficial anaerobes from Bacillota and Bacteroidota were depleted while microorganisms from Verrucomicrobiota and Fusobacteriota were enriched in feces from SBS piglets. The dysregulation of metabolites and metabolic pathways was observed in the metabolic profiles of ileal mucosa and serum in SBS piglets. Indolelactic acid (ILA) levels were found to be reduced in the ileal mucosa and serum of SBS piglets. Transcriptomic analysis revealed an extensive functional alteration in SBS, primarily manifested as metabolic changes and intestinal proliferation. The multi-omics analysis revealed that the decreased abundance of Lactobacillus may result in a diminished production of their metabolite ILA, thereby influencing intestinal proliferation and anti-inflammatory responses.</p><p><strong>Conclusion: </strong>Disrupted homeostasis of gut microbiota, metabolism, and transcriptome were reported in the SBS piglets. Multi-omics analysis demonstrated Lactobacillus and its metabolite ILA may be involved in small intestinal adaptation of SBS. These alterations may contribute to the proinflammatory state and the delay of intestinal adaptation in SBS, which in turn provide promising targets for therapies.</p>\",\"PeriodicalId\":19196,\"journal\":{\"name\":\"Nutrition & Metabolism\",\"volume\":\"22 1\",\"pages\":\"47\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096513/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12986-025-00938-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12986-025-00938-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Multi-omics analysis reveals Lactobacillus and Indolelactic acid involved in small intestinal adaptation of piglet with short bowel syndrome.
Background: Short bowel syndrome (SBS) is a condition characterized by malabsorption that occurs when a patient loses a significant amount of bowel length or function, often necessitating lifelong parenteral nutrition support. This study utilized multi-omics analysis to investigate alterations in gut microbiota, metabolism, and transcriptome during the progression of intestinal adaptation in SBS using a piglet model.
Methods: We established a model of SBS in Bama mini piglets by performing a 75% jejunoileal resection. Fifteen piglets were randomized into EN, PN, and PN-SBS groups. Fecal samples were collected for 16 S rRNA gene-based microbiota analysis. Ileal mucosa and serum were collected for untargeted liquid chromatography-mass spectrometry. Transcriptomic analysis on ileal mucosa was performed.
Results: The PN-SBS model was established in the newborn piglets. A significant decrease in species-level diversity was observed in piglets with SBS, accompanied by alterations in their microbiome compositions. The beneficial anaerobes from Bacillota and Bacteroidota were depleted while microorganisms from Verrucomicrobiota and Fusobacteriota were enriched in feces from SBS piglets. The dysregulation of metabolites and metabolic pathways was observed in the metabolic profiles of ileal mucosa and serum in SBS piglets. Indolelactic acid (ILA) levels were found to be reduced in the ileal mucosa and serum of SBS piglets. Transcriptomic analysis revealed an extensive functional alteration in SBS, primarily manifested as metabolic changes and intestinal proliferation. The multi-omics analysis revealed that the decreased abundance of Lactobacillus may result in a diminished production of their metabolite ILA, thereby influencing intestinal proliferation and anti-inflammatory responses.
Conclusion: Disrupted homeostasis of gut microbiota, metabolism, and transcriptome were reported in the SBS piglets. Multi-omics analysis demonstrated Lactobacillus and its metabolite ILA may be involved in small intestinal adaptation of SBS. These alterations may contribute to the proinflammatory state and the delay of intestinal adaptation in SBS, which in turn provide promising targets for therapies.
期刊介绍:
Nutrition & Metabolism publishes studies with a clear focus on nutrition and metabolism with applications ranging from nutrition needs, exercise physiology, clinical and population studies, as well as the underlying mechanisms in these aspects.
The areas of interest for Nutrition & Metabolism encompass studies in molecular nutrition in the context of obesity, diabetes, lipedemias, metabolic syndrome and exercise physiology. Manuscripts related to molecular, cellular and human metabolism, nutrient sensing and nutrient–gene interactions are also in interest, as are submissions that have employed new and innovative strategies like metabolomics/lipidomics or other omic-based biomarkers to predict nutritional status and metabolic diseases.
Key areas we wish to encourage submissions from include:
-how diet and specific nutrients interact with genes, proteins or metabolites to influence metabolic phenotypes and disease outcomes;
-the role of epigenetic factors and the microbiome in the pathogenesis of metabolic diseases and their influence on metabolic responses to diet and food components;
-how diet and other environmental factors affect epigenetics and microbiota; the extent to which genetic and nongenetic factors modify personal metabolic responses to diet and food compositions and the mechanisms involved;
-how specific biologic networks and nutrient sensing mechanisms attribute to metabolic variability.