{"title":"基于早期实验室指标变化建立肝吸虫感染预测模型的回顾性研究","authors":"Yiting Wang, Tie Wang, Xin Wen, Chongchong Feng","doi":"10.1186/s13071-025-06833-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatic clonorchiasis is one of the most prevalent foodborne parasitic diseases in China and is often overlooked because the initial symptoms are not obvious. In this study, a multivariate model for the early prediction of disease onset using laboratory test data from liver-fluke-infected patients was developed and validated.</p><p><strong>Methods: </strong>Laboratory data from 147 liver-fluke-infected patients and 151 healthy control subjects were collected. Univariate logistic regression, Spearman correlation analysis, and collinearity diagnosis were used to screen for independent factors. A multivariate model was then constructed using the backward likelihood ratio method. For external validation, an independent patient cohort from another hospital was analyzed. The discriminative performance of the combined model was compared with that of previously identified biomarkers (eosinophil count and γ-glutamyl transpeptidase).</p><p><strong>Results: </strong>A 12-indicator prediction model for liver fluke infection was developed using traditional logistic regression (82.31% sensitivity and 88.08% specificity). The receiver operating characteristic curve, calibration curve, and decision curve analyses revealed that the model exhibited excellent discriminative ability (area under the curve [AUC]: training = 0.928, validation = 0.808), goodness of fit, and clinical practicability. The combined model showed superior discrimination compared with individual biomarkers, including eosinophil count (AUC = 0.577) and γ-glutamyl transpeptidase (AUC = 0.620).</p><p><strong>Conclusions: </strong>This study developed an early risk prediction model for liver fluke infection using routine laboratory test data. Compared with previously reported biomarkers, the model demonstrated superior diagnostic performance and showed potential as a clinical tool for identifying early stage liver fluke infection in patients.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"186"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096801/pdf/","citationCount":"0","resultStr":"{\"title\":\"Establishing a predictive model for liver fluke infection on the basis of early changes in laboratory indicators: a retrospective study.\",\"authors\":\"Yiting Wang, Tie Wang, Xin Wen, Chongchong Feng\",\"doi\":\"10.1186/s13071-025-06833-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hepatic clonorchiasis is one of the most prevalent foodborne parasitic diseases in China and is often overlooked because the initial symptoms are not obvious. In this study, a multivariate model for the early prediction of disease onset using laboratory test data from liver-fluke-infected patients was developed and validated.</p><p><strong>Methods: </strong>Laboratory data from 147 liver-fluke-infected patients and 151 healthy control subjects were collected. Univariate logistic regression, Spearman correlation analysis, and collinearity diagnosis were used to screen for independent factors. A multivariate model was then constructed using the backward likelihood ratio method. For external validation, an independent patient cohort from another hospital was analyzed. The discriminative performance of the combined model was compared with that of previously identified biomarkers (eosinophil count and γ-glutamyl transpeptidase).</p><p><strong>Results: </strong>A 12-indicator prediction model for liver fluke infection was developed using traditional logistic regression (82.31% sensitivity and 88.08% specificity). The receiver operating characteristic curve, calibration curve, and decision curve analyses revealed that the model exhibited excellent discriminative ability (area under the curve [AUC]: training = 0.928, validation = 0.808), goodness of fit, and clinical practicability. The combined model showed superior discrimination compared with individual biomarkers, including eosinophil count (AUC = 0.577) and γ-glutamyl transpeptidase (AUC = 0.620).</p><p><strong>Conclusions: </strong>This study developed an early risk prediction model for liver fluke infection using routine laboratory test data. Compared with previously reported biomarkers, the model demonstrated superior diagnostic performance and showed potential as a clinical tool for identifying early stage liver fluke infection in patients.</p>\",\"PeriodicalId\":19793,\"journal\":{\"name\":\"Parasites & Vectors\",\"volume\":\"18 1\",\"pages\":\"186\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasites & Vectors\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13071-025-06833-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06833-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Establishing a predictive model for liver fluke infection on the basis of early changes in laboratory indicators: a retrospective study.
Background: Hepatic clonorchiasis is one of the most prevalent foodborne parasitic diseases in China and is often overlooked because the initial symptoms are not obvious. In this study, a multivariate model for the early prediction of disease onset using laboratory test data from liver-fluke-infected patients was developed and validated.
Methods: Laboratory data from 147 liver-fluke-infected patients and 151 healthy control subjects were collected. Univariate logistic regression, Spearman correlation analysis, and collinearity diagnosis were used to screen for independent factors. A multivariate model was then constructed using the backward likelihood ratio method. For external validation, an independent patient cohort from another hospital was analyzed. The discriminative performance of the combined model was compared with that of previously identified biomarkers (eosinophil count and γ-glutamyl transpeptidase).
Results: A 12-indicator prediction model for liver fluke infection was developed using traditional logistic regression (82.31% sensitivity and 88.08% specificity). The receiver operating characteristic curve, calibration curve, and decision curve analyses revealed that the model exhibited excellent discriminative ability (area under the curve [AUC]: training = 0.928, validation = 0.808), goodness of fit, and clinical practicability. The combined model showed superior discrimination compared with individual biomarkers, including eosinophil count (AUC = 0.577) and γ-glutamyl transpeptidase (AUC = 0.620).
Conclusions: This study developed an early risk prediction model for liver fluke infection using routine laboratory test data. Compared with previously reported biomarkers, the model demonstrated superior diagnostic performance and showed potential as a clinical tool for identifying early stage liver fluke infection in patients.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.