短肽通过免疫微环境失调和线粒体失衡干扰精子发生。

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Heng Wang, Xiaofang Tan, Deyu Chen
{"title":"短肽通过免疫微环境失调和线粒体失衡干扰精子发生。","authors":"Heng Wang, Xiaofang Tan, Deyu Chen","doi":"10.1002/2211-5463.70058","DOIUrl":null,"url":null,"abstract":"<p><p>A short peptide derived from the occludin protein regulates tight junctions (TJ) of the blood-testis barrier and impairs germ cell development. However, the mechanism behind how this peptide regulates TJ and induces cell apoptosis remains unclear. In the present study, an animal model with induced TJ disruption via the short peptide was used to evaluate its impact on spermatogenesis. Here, we demonstrate that the short peptide promoted the infiltration of immune cells into the testicular interstitial tissue, accompanied by upregulation expression of the pro-inflammatory factors interleukin-6 and tumor necrosis factor-α. Moreover, mitochondrial fragmentation and mitophagy were upregulated in Sertoli cells and Leydig cells. Consistently, terminal deoxynucleotidyl transferase dUTP nick end labeling staining revealed extensive apoptosis in the testes during spermatogenesis. Notably, the severity of these disruptions began to attenuate after 27 days, although full functional recovery was not observed. Our findings reveal a novel mechanism wherein peptide-induced immune dysregulation and mitochondrial dysfunction synergistically impair spermatogenesis, potentially via microenvironmental perturbation of the TJ. Overall, these findings could hold valuable insights for the development of non-hormonal male contraceptives.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short peptide perturbs spermatogenesis via immune microenvironment dysregulation and mitochondrial imbalance.\",\"authors\":\"Heng Wang, Xiaofang Tan, Deyu Chen\",\"doi\":\"10.1002/2211-5463.70058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A short peptide derived from the occludin protein regulates tight junctions (TJ) of the blood-testis barrier and impairs germ cell development. However, the mechanism behind how this peptide regulates TJ and induces cell apoptosis remains unclear. In the present study, an animal model with induced TJ disruption via the short peptide was used to evaluate its impact on spermatogenesis. Here, we demonstrate that the short peptide promoted the infiltration of immune cells into the testicular interstitial tissue, accompanied by upregulation expression of the pro-inflammatory factors interleukin-6 and tumor necrosis factor-α. Moreover, mitochondrial fragmentation and mitophagy were upregulated in Sertoli cells and Leydig cells. Consistently, terminal deoxynucleotidyl transferase dUTP nick end labeling staining revealed extensive apoptosis in the testes during spermatogenesis. Notably, the severity of these disruptions began to attenuate after 27 days, although full functional recovery was not observed. Our findings reveal a novel mechanism wherein peptide-induced immune dysregulation and mitochondrial dysfunction synergistically impair spermatogenesis, potentially via microenvironmental perturbation of the TJ. Overall, these findings could hold valuable insights for the development of non-hormonal male contraceptives.</p>\",\"PeriodicalId\":12187,\"journal\":{\"name\":\"FEBS Open Bio\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Open Bio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/2211-5463.70058\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/2211-5463.70058","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

一种由occludin蛋白衍生的短肽调节血睾丸屏障的紧密连接(TJ)并损害生殖细胞的发育。然而,这种肽调控TJ和诱导细胞凋亡的机制尚不清楚。在本研究中,通过短肽诱导TJ破坏的动物模型来评估其对精子发生的影响。在这里,我们证明了短肽促进免疫细胞向睾丸间质组织的浸润,并伴有促炎因子白细胞介素-6和肿瘤坏死因子-α的上调表达。此外,支持细胞和间质细胞的线粒体分裂和线粒体自噬水平上调。与此一致,末端脱氧核苷酸转移酶dUTP缺口末端标记染色显示精子发生过程中睾丸中广泛的细胞凋亡。值得注意的是,这些干扰的严重程度在27天后开始减弱,尽管没有观察到完全的功能恢复。我们的发现揭示了一种新的机制,其中肽诱导的免疫失调和线粒体功能障碍协同损害精子发生,可能通过微环境干扰TJ。总的来说,这些发现可以为非激素男性避孕药的开发提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short peptide perturbs spermatogenesis via immune microenvironment dysregulation and mitochondrial imbalance.

A short peptide derived from the occludin protein regulates tight junctions (TJ) of the blood-testis barrier and impairs germ cell development. However, the mechanism behind how this peptide regulates TJ and induces cell apoptosis remains unclear. In the present study, an animal model with induced TJ disruption via the short peptide was used to evaluate its impact on spermatogenesis. Here, we demonstrate that the short peptide promoted the infiltration of immune cells into the testicular interstitial tissue, accompanied by upregulation expression of the pro-inflammatory factors interleukin-6 and tumor necrosis factor-α. Moreover, mitochondrial fragmentation and mitophagy were upregulated in Sertoli cells and Leydig cells. Consistently, terminal deoxynucleotidyl transferase dUTP nick end labeling staining revealed extensive apoptosis in the testes during spermatogenesis. Notably, the severity of these disruptions began to attenuate after 27 days, although full functional recovery was not observed. Our findings reveal a novel mechanism wherein peptide-induced immune dysregulation and mitochondrial dysfunction synergistically impair spermatogenesis, potentially via microenvironmental perturbation of the TJ. Overall, these findings could hold valuable insights for the development of non-hormonal male contraceptives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEBS Open Bio
FEBS Open Bio BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
5.10
自引率
0.00%
发文量
173
审稿时长
10 weeks
期刊介绍: FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community. FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信