Chris R Stokes, Jonathan L Bamber, Andrea Dutton, Robert M DeConto
{"title":"升温1.5°C对极地冰盖来说太高了。","authors":"Chris R Stokes, Jonathan L Bamber, Andrea Dutton, Robert M DeConto","doi":"10.1038/s43247-025-02299-w","DOIUrl":null,"url":null,"abstract":"<p><p>Mass loss from ice sheets in Greenland and Antarctica has quadrupled since the 1990s and now represents the dominant source of global mean sea-level rise from the cryosphere. This has raised concerns about their future stability and focussed attention on the global mean temperature thresholds that might trigger more rapid retreat or even collapse, with renewed calls to meet the more ambitious target of the Paris Climate Agreement and limit warming to +1.5 °C above pre-industrial. Here we synthesise multiple lines of evidence to show that +1.5 °C is too high and that even current climate forcing (+1.2 °C), if sustained, is likely to generate several metres of sea-level rise over the coming centuries, causing extensive loss and damage to coastal populations and challenging the implementation of adaptation measures. To avoid this requires a global mean temperature that is cooler than present and which we hypothesise to be closer to +1 °C above pre-industrial, possibly even lower, but further work is urgently required to more precisely determine a 'safe limit' for ice sheets.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"351"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092291/pdf/","citationCount":"0","resultStr":"{\"title\":\"Warming of +1.5 °C is too high for polar ice sheets.\",\"authors\":\"Chris R Stokes, Jonathan L Bamber, Andrea Dutton, Robert M DeConto\",\"doi\":\"10.1038/s43247-025-02299-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mass loss from ice sheets in Greenland and Antarctica has quadrupled since the 1990s and now represents the dominant source of global mean sea-level rise from the cryosphere. This has raised concerns about their future stability and focussed attention on the global mean temperature thresholds that might trigger more rapid retreat or even collapse, with renewed calls to meet the more ambitious target of the Paris Climate Agreement and limit warming to +1.5 °C above pre-industrial. Here we synthesise multiple lines of evidence to show that +1.5 °C is too high and that even current climate forcing (+1.2 °C), if sustained, is likely to generate several metres of sea-level rise over the coming centuries, causing extensive loss and damage to coastal populations and challenging the implementation of adaptation measures. To avoid this requires a global mean temperature that is cooler than present and which we hypothesise to be closer to +1 °C above pre-industrial, possibly even lower, but further work is urgently required to more precisely determine a 'safe limit' for ice sheets.</p>\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\"6 1\",\"pages\":\"351\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092291/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1038/s43247-025-02299-w\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02299-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Warming of +1.5 °C is too high for polar ice sheets.
Mass loss from ice sheets in Greenland and Antarctica has quadrupled since the 1990s and now represents the dominant source of global mean sea-level rise from the cryosphere. This has raised concerns about their future stability and focussed attention on the global mean temperature thresholds that might trigger more rapid retreat or even collapse, with renewed calls to meet the more ambitious target of the Paris Climate Agreement and limit warming to +1.5 °C above pre-industrial. Here we synthesise multiple lines of evidence to show that +1.5 °C is too high and that even current climate forcing (+1.2 °C), if sustained, is likely to generate several metres of sea-level rise over the coming centuries, causing extensive loss and damage to coastal populations and challenging the implementation of adaptation measures. To avoid this requires a global mean temperature that is cooler than present and which we hypothesise to be closer to +1 °C above pre-industrial, possibly even lower, but further work is urgently required to more precisely determine a 'safe limit' for ice sheets.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.