Alexander E. Yarawsky , Paola Cardenas Lopez , Johannes Walter , Michael T. DeLion , Lake N. Paul
{"title":"用DGE-AUC测定浮力密度的基本方法。","authors":"Alexander E. Yarawsky , Paola Cardenas Lopez , Johannes Walter , Michael T. DeLion , Lake N. Paul","doi":"10.1016/j.ab.2025.115907","DOIUrl":null,"url":null,"abstract":"<div><div>Density gradient equilibrium analytical ultracentrifugation (DGE-AUC) was first introduced in 1957. The method saw significant use over the following decade. Since then, DGE-AUC has been used by polymer and genomic DNA fields. Emerging medicine has revived interest in the technique for characterization of cell and gene therapeutics. While several <em>model</em>-<em>dependent</em> approaches exist to determine density at any point along a density gradient at equilibrium, there is ample evidence in the vast density gradient literature that indicates the presence of pressure effects, solvent compressibility, and general nonideal behavior of the gradient medium that are not easily accounted for in models describing the density gradient. These complications mandated the general use of reference materials and standard conditions. With an interest in buoyant density determination for particles of various composition, an approach that does not rely on standards is desirable. The current manuscript details a fundamental <em>model</em>-<em>independent</em> method for determination of buoyant density by DGE-AUC. An examination of this novel method is presented in the context of NISTmAb and DNA in a CsCl gradient, as well as polystyrene beads in a sucrose gradient. The method described herein is broadly applicable to determine the buoyant density of a particle in a density gradient medium.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"704 ","pages":"Article 115907"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fundamental approach to buoyant density determination by DGE-AUC\",\"authors\":\"Alexander E. Yarawsky , Paola Cardenas Lopez , Johannes Walter , Michael T. DeLion , Lake N. Paul\",\"doi\":\"10.1016/j.ab.2025.115907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Density gradient equilibrium analytical ultracentrifugation (DGE-AUC) was first introduced in 1957. The method saw significant use over the following decade. Since then, DGE-AUC has been used by polymer and genomic DNA fields. Emerging medicine has revived interest in the technique for characterization of cell and gene therapeutics. While several <em>model</em>-<em>dependent</em> approaches exist to determine density at any point along a density gradient at equilibrium, there is ample evidence in the vast density gradient literature that indicates the presence of pressure effects, solvent compressibility, and general nonideal behavior of the gradient medium that are not easily accounted for in models describing the density gradient. These complications mandated the general use of reference materials and standard conditions. With an interest in buoyant density determination for particles of various composition, an approach that does not rely on standards is desirable. The current manuscript details a fundamental <em>model</em>-<em>independent</em> method for determination of buoyant density by DGE-AUC. An examination of this novel method is presented in the context of NISTmAb and DNA in a CsCl gradient, as well as polystyrene beads in a sucrose gradient. The method described herein is broadly applicable to determine the buoyant density of a particle in a density gradient medium.</div></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"704 \",\"pages\":\"Article 115907\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269725001459\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269725001459","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A fundamental approach to buoyant density determination by DGE-AUC
Density gradient equilibrium analytical ultracentrifugation (DGE-AUC) was first introduced in 1957. The method saw significant use over the following decade. Since then, DGE-AUC has been used by polymer and genomic DNA fields. Emerging medicine has revived interest in the technique for characterization of cell and gene therapeutics. While several model-dependent approaches exist to determine density at any point along a density gradient at equilibrium, there is ample evidence in the vast density gradient literature that indicates the presence of pressure effects, solvent compressibility, and general nonideal behavior of the gradient medium that are not easily accounted for in models describing the density gradient. These complications mandated the general use of reference materials and standard conditions. With an interest in buoyant density determination for particles of various composition, an approach that does not rely on standards is desirable. The current manuscript details a fundamental model-independent method for determination of buoyant density by DGE-AUC. An examination of this novel method is presented in the context of NISTmAb and DNA in a CsCl gradient, as well as polystyrene beads in a sucrose gradient. The method described herein is broadly applicable to determine the buoyant density of a particle in a density gradient medium.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.