揭示高性能CZTSSe光伏电池的钠扩散动力学和锁定机制。

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuyu Li, Chaoran Li, Chu Liu, Jiachen Wu, Letu Siqin, Yuan Li, Guonan Cui, Yanchun Yang, Ruijian Liu, Hongmei Luan, Chengjun Zhu
{"title":"揭示高性能CZTSSe光伏电池的钠扩散动力学和锁定机制。","authors":"Shuyu Li, Chaoran Li, Chu Liu, Jiachen Wu, Letu Siqin, Yuan Li, Guonan Cui, Yanchun Yang, Ruijian Liu, Hongmei Luan, Chengjun Zhu","doi":"10.1002/advs.202504087","DOIUrl":null,"url":null,"abstract":"<p><p>This work unveils a diffusion-kinetic modulation strategy that fundamentally redefines sodium management in kesterite photovoltaics, enabling spatially controlled Na sequestration within Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) absorber layers through a thermally engineered \"Na-locking\" mechanism. By establishing critical correlations between post-processing thermal protocols and alkali metal migration dynamics, how synchronized extension of sintering duration and rapid cooling termination creates a non-equilibrium state that traps Na at strategic interfacial positions is demonstrated. This approach leverages Na's dual functionality as a crystallization promoter and defect passivator, driving concurrent improvements in crystallographic coherence and electronic uniformity. The optimized absorber architecture features laterally expanded grains with reduced boundary density and homogenized interfacial charge transport pathways, yielding the highest reported efficiency of 13.22% for Na-doped CZTSSe solar cells to date, marked by synergistic enhancements in both V<sub>OC</sub> and FF. Crucially, this substrate-derived Na regulation paradigm outperforms conventional extrinsic doping methods through its self-limiting diffusion characteristics, ensuring compositional stability while eliminating secondary phase risks. The methodology establishes a universal framework for defect engineering in chalcogenide photovoltaics, bridging fundamental insights into alkali metal diffusion thermodynamics with scalable manufacturing solutions. These findings advance kesterite solar cell technology and offer a blueprint for optimizing thin-film devices, improving process tolerance and material sustainability.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e04087"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Sodium Diffusion Kinetics and Locking Mechanisms for High-Performance CZTSSe Photovoltaics.\",\"authors\":\"Shuyu Li, Chaoran Li, Chu Liu, Jiachen Wu, Letu Siqin, Yuan Li, Guonan Cui, Yanchun Yang, Ruijian Liu, Hongmei Luan, Chengjun Zhu\",\"doi\":\"10.1002/advs.202504087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work unveils a diffusion-kinetic modulation strategy that fundamentally redefines sodium management in kesterite photovoltaics, enabling spatially controlled Na sequestration within Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> (CZTSSe) absorber layers through a thermally engineered \\\"Na-locking\\\" mechanism. By establishing critical correlations between post-processing thermal protocols and alkali metal migration dynamics, how synchronized extension of sintering duration and rapid cooling termination creates a non-equilibrium state that traps Na at strategic interfacial positions is demonstrated. This approach leverages Na's dual functionality as a crystallization promoter and defect passivator, driving concurrent improvements in crystallographic coherence and electronic uniformity. The optimized absorber architecture features laterally expanded grains with reduced boundary density and homogenized interfacial charge transport pathways, yielding the highest reported efficiency of 13.22% for Na-doped CZTSSe solar cells to date, marked by synergistic enhancements in both V<sub>OC</sub> and FF. Crucially, this substrate-derived Na regulation paradigm outperforms conventional extrinsic doping methods through its self-limiting diffusion characteristics, ensuring compositional stability while eliminating secondary phase risks. The methodology establishes a universal framework for defect engineering in chalcogenide photovoltaics, bridging fundamental insights into alkali metal diffusion thermodynamics with scalable manufacturing solutions. These findings advance kesterite solar cell technology and offer a blueprint for optimizing thin-film devices, improving process tolerance and material sustainability.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e04087\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202504087\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202504087","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作揭示了一种扩散动力学调制策略,从根本上重新定义了kesterite光伏中的钠管理,通过热工程的“Na-locking”机制,在Cu2ZnSn(S,Se)4 (CZTSSe)吸收层内实现空间控制的Na封存。通过建立后处理热协议和碱金属迁移动力学之间的关键相关性,证明了同步延长烧结时间和快速冷却终止如何创建非平衡状态,从而将Na困在战略界面位置。这种方法利用Na作为结晶促进剂和缺陷钝化剂的双重功能,推动晶体相干性和电子均匀性的同步改进。优化的吸收剂结构具有横向扩展的颗粒,降低了边界密度和均匀的界面电荷传输途径,迄今为止报道的na掺杂CZTSSe太阳能电池的最高效率为13.22%,其显著特征是VOC和FF的协同增强。至关重要的是,这种基板衍生的Na调节模式通过其自我限制的扩散特性优于传统的外源掺杂方法,确保了成分的稳定性,同时消除了二次相风险。该方法建立了硫系光伏电池缺陷工程的通用框架,将碱金属扩散热力学的基本见解与可扩展的制造解决方案联系起来。这些发现推动了kesterite太阳能电池技术的发展,并为优化薄膜器件、提高工艺公差和材料可持续性提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling Sodium Diffusion Kinetics and Locking Mechanisms for High-Performance CZTSSe Photovoltaics.

This work unveils a diffusion-kinetic modulation strategy that fundamentally redefines sodium management in kesterite photovoltaics, enabling spatially controlled Na sequestration within Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers through a thermally engineered "Na-locking" mechanism. By establishing critical correlations between post-processing thermal protocols and alkali metal migration dynamics, how synchronized extension of sintering duration and rapid cooling termination creates a non-equilibrium state that traps Na at strategic interfacial positions is demonstrated. This approach leverages Na's dual functionality as a crystallization promoter and defect passivator, driving concurrent improvements in crystallographic coherence and electronic uniformity. The optimized absorber architecture features laterally expanded grains with reduced boundary density and homogenized interfacial charge transport pathways, yielding the highest reported efficiency of 13.22% for Na-doped CZTSSe solar cells to date, marked by synergistic enhancements in both VOC and FF. Crucially, this substrate-derived Na regulation paradigm outperforms conventional extrinsic doping methods through its self-limiting diffusion characteristics, ensuring compositional stability while eliminating secondary phase risks. The methodology establishes a universal framework for defect engineering in chalcogenide photovoltaics, bridging fundamental insights into alkali metal diffusion thermodynamics with scalable manufacturing solutions. These findings advance kesterite solar cell technology and offer a blueprint for optimizing thin-film devices, improving process tolerance and material sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信