{"title":"铜诱导的氧化损伤对肉鸡肾脏内质网质量控制系统的影响。","authors":"Feiyang Ma, Mengran Wang, Gaolong Zhong, Jianzhao Liao, Yihui Huo, Zekai Wang, Shaojun He","doi":"10.1007/s10534-025-00695-5","DOIUrl":null,"url":null,"abstract":"<p><p>Copper (Cu) is a pervasive element utilized in economic animal production. However, overuse can have toxic effects on animals and threaten public food safety. To gain a deeper understanding of the mechanisms underlying Cu-induced nephrotoxicity, an in-depth analysis was conducted on the effects of Cu on the renal endoplasmic reticulum quality control (ERQC) system. In the course of this experiment, one-day-old chicks were fed diets comprising Cu levels (11, 110, 220 and 330 mg/kg) for 49 days. Our findings indicate that an excess of Cu may result in oxidative stress, which may then induce tissue damage within the kidney. Furthermore, the experimental results indicated that elevated Cu levels may disrupt to the ERQC system in chicken kidneys. The mRNA levels of GRP78, GRP94, ATF4, IRE1, and XBP1, as well as the protein levels of GRP78, GRP94, IRE1, XBP1, and CHOP, were markedly elevated in all treatment groups relative to the control group. Conversely, the mRNA and protein levels of eIF2α and ATF6 exhibited a notable decline with the increase in Cu levels. Similarly, RTN3, ATL1, and ATL2 mRNA levels as well as RTN3 and ATL3 protein levels exhibited a notable elevation in conjunction with an appreciable decline in FAM134B and SEC62 mRNA and protein levels, respectively, as Cu levels increased. Furthermore, bioinformatics analyses indicated a correlation between oxidative damage and ERQC markers. The above results suggest that Cu-induced oxidative damage may injure to chicken kidneys via disturbances in the ERQC system.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of copper-induced oxidative damage on the endoplasmic reticulum quality control system in broiler kidneys.\",\"authors\":\"Feiyang Ma, Mengran Wang, Gaolong Zhong, Jianzhao Liao, Yihui Huo, Zekai Wang, Shaojun He\",\"doi\":\"10.1007/s10534-025-00695-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Copper (Cu) is a pervasive element utilized in economic animal production. However, overuse can have toxic effects on animals and threaten public food safety. To gain a deeper understanding of the mechanisms underlying Cu-induced nephrotoxicity, an in-depth analysis was conducted on the effects of Cu on the renal endoplasmic reticulum quality control (ERQC) system. In the course of this experiment, one-day-old chicks were fed diets comprising Cu levels (11, 110, 220 and 330 mg/kg) for 49 days. Our findings indicate that an excess of Cu may result in oxidative stress, which may then induce tissue damage within the kidney. Furthermore, the experimental results indicated that elevated Cu levels may disrupt to the ERQC system in chicken kidneys. The mRNA levels of GRP78, GRP94, ATF4, IRE1, and XBP1, as well as the protein levels of GRP78, GRP94, IRE1, XBP1, and CHOP, were markedly elevated in all treatment groups relative to the control group. Conversely, the mRNA and protein levels of eIF2α and ATF6 exhibited a notable decline with the increase in Cu levels. Similarly, RTN3, ATL1, and ATL2 mRNA levels as well as RTN3 and ATL3 protein levels exhibited a notable elevation in conjunction with an appreciable decline in FAM134B and SEC62 mRNA and protein levels, respectively, as Cu levels increased. Furthermore, bioinformatics analyses indicated a correlation between oxidative damage and ERQC markers. The above results suggest that Cu-induced oxidative damage may injure to chicken kidneys via disturbances in the ERQC system.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-025-00695-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00695-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The impact of copper-induced oxidative damage on the endoplasmic reticulum quality control system in broiler kidneys.
Copper (Cu) is a pervasive element utilized in economic animal production. However, overuse can have toxic effects on animals and threaten public food safety. To gain a deeper understanding of the mechanisms underlying Cu-induced nephrotoxicity, an in-depth analysis was conducted on the effects of Cu on the renal endoplasmic reticulum quality control (ERQC) system. In the course of this experiment, one-day-old chicks were fed diets comprising Cu levels (11, 110, 220 and 330 mg/kg) for 49 days. Our findings indicate that an excess of Cu may result in oxidative stress, which may then induce tissue damage within the kidney. Furthermore, the experimental results indicated that elevated Cu levels may disrupt to the ERQC system in chicken kidneys. The mRNA levels of GRP78, GRP94, ATF4, IRE1, and XBP1, as well as the protein levels of GRP78, GRP94, IRE1, XBP1, and CHOP, were markedly elevated in all treatment groups relative to the control group. Conversely, the mRNA and protein levels of eIF2α and ATF6 exhibited a notable decline with the increase in Cu levels. Similarly, RTN3, ATL1, and ATL2 mRNA levels as well as RTN3 and ATL3 protein levels exhibited a notable elevation in conjunction with an appreciable decline in FAM134B and SEC62 mRNA and protein levels, respectively, as Cu levels increased. Furthermore, bioinformatics analyses indicated a correlation between oxidative damage and ERQC markers. The above results suggest that Cu-induced oxidative damage may injure to chicken kidneys via disturbances in the ERQC system.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.