Rebecca Z Weber, Nora H Rentsch, Beatriz Achón Buil, Melanie Generali, Lina R Nih, Christian Tackenberg, Ruslan Rust
{"title":"延迟神经干细胞移植可提高脑卒中后移植物的初始存活率。","authors":"Rebecca Z Weber, Nora H Rentsch, Beatriz Achón Buil, Melanie Generali, Lina R Nih, Christian Tackenberg, Ruslan Rust","doi":"10.1002/advs.202504154","DOIUrl":null,"url":null,"abstract":"<p><p>Neural stem cell therapies hold great promise for improving stroke recovery, but the hostile stroke microenvironment can hinder the initial graft survival. It has long been well documented that the microenvironment evolves over time, making it crucial to identify the optimal transplantation window to maximize therapeutic efficacy. However, it remains uncertain whether acute or delayed local cell transplantations better supports graft viability after stroke. Here, it is shown that delayed intracerebral transplantation of neural progenitor cells (NPCs) derived from human induced pluripotent cells (iPSCs) at 7 days post stroke significantly enhances graft proliferation and survival, and promotes axonal sprouting, compared to acute transplantation at 1 day post stroke, in a mouse model of large cortical stroke. Using in vivo bioluminescence imaging over a 6-week period post-transplantation, a more than fivefold increase is observed in bioluminescence signal in mice that received delayed NPC therapy, compared to those that underwent acute NPC transplantation. The increased number of cell grafts in mice receiving delayed NPC transplantation is driven by increased proliferation rates early after transplantation, which subsequently declines to similarly low levels in both groups. Notably, it is found that the majority of transplanted NPCs differentiate into neurons after 6 weeks, with no significant differences in the neuron-to-glia ratio between acute and delayed transplantation groups. These findings suggest that delayed NPC transplantation improves early graft survival and proliferation, which could help identify the optimal therapeutic window for maximizing the effectiveness of NPC-based therapies in stroke.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e04154"},"PeriodicalIF":14.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delayed Transplantation of Neural Stem Cells Improves Initial Graft Survival after Stroke.\",\"authors\":\"Rebecca Z Weber, Nora H Rentsch, Beatriz Achón Buil, Melanie Generali, Lina R Nih, Christian Tackenberg, Ruslan Rust\",\"doi\":\"10.1002/advs.202504154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neural stem cell therapies hold great promise for improving stroke recovery, but the hostile stroke microenvironment can hinder the initial graft survival. It has long been well documented that the microenvironment evolves over time, making it crucial to identify the optimal transplantation window to maximize therapeutic efficacy. However, it remains uncertain whether acute or delayed local cell transplantations better supports graft viability after stroke. Here, it is shown that delayed intracerebral transplantation of neural progenitor cells (NPCs) derived from human induced pluripotent cells (iPSCs) at 7 days post stroke significantly enhances graft proliferation and survival, and promotes axonal sprouting, compared to acute transplantation at 1 day post stroke, in a mouse model of large cortical stroke. Using in vivo bioluminescence imaging over a 6-week period post-transplantation, a more than fivefold increase is observed in bioluminescence signal in mice that received delayed NPC therapy, compared to those that underwent acute NPC transplantation. The increased number of cell grafts in mice receiving delayed NPC transplantation is driven by increased proliferation rates early after transplantation, which subsequently declines to similarly low levels in both groups. Notably, it is found that the majority of transplanted NPCs differentiate into neurons after 6 weeks, with no significant differences in the neuron-to-glia ratio between acute and delayed transplantation groups. These findings suggest that delayed NPC transplantation improves early graft survival and proliferation, which could help identify the optimal therapeutic window for maximizing the effectiveness of NPC-based therapies in stroke.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e04154\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202504154\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202504154","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Delayed Transplantation of Neural Stem Cells Improves Initial Graft Survival after Stroke.
Neural stem cell therapies hold great promise for improving stroke recovery, but the hostile stroke microenvironment can hinder the initial graft survival. It has long been well documented that the microenvironment evolves over time, making it crucial to identify the optimal transplantation window to maximize therapeutic efficacy. However, it remains uncertain whether acute or delayed local cell transplantations better supports graft viability after stroke. Here, it is shown that delayed intracerebral transplantation of neural progenitor cells (NPCs) derived from human induced pluripotent cells (iPSCs) at 7 days post stroke significantly enhances graft proliferation and survival, and promotes axonal sprouting, compared to acute transplantation at 1 day post stroke, in a mouse model of large cortical stroke. Using in vivo bioluminescence imaging over a 6-week period post-transplantation, a more than fivefold increase is observed in bioluminescence signal in mice that received delayed NPC therapy, compared to those that underwent acute NPC transplantation. The increased number of cell grafts in mice receiving delayed NPC transplantation is driven by increased proliferation rates early after transplantation, which subsequently declines to similarly low levels in both groups. Notably, it is found that the majority of transplanted NPCs differentiate into neurons after 6 weeks, with no significant differences in the neuron-to-glia ratio between acute and delayed transplantation groups. These findings suggest that delayed NPC transplantation improves early graft survival and proliferation, which could help identify the optimal therapeutic window for maximizing the effectiveness of NPC-based therapies in stroke.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.