Javier Pinto, Chloé Haberkorn, Markus Franzén, Ayco J. M. Tack, Rike Stelkens
{"title":"柞树寄主北界发酵酵母的多样性","authors":"Javier Pinto, Chloé Haberkorn, Markus Franzén, Ayco J. M. Tack, Rike Stelkens","doi":"10.1111/1758-2229.70110","DOIUrl":null,"url":null,"abstract":"<p>Fermentative yeasts play important roles in both ecological and industrial processes, but their distribution and abundance in natural environments are not well understood. We investigated the diversity of yeasts at the northern range limit of their oak tree hosts (<i>Quercus</i> spp.) in Sweden, and identified climatic and ecological conditions governing their distribution. Yeasts were isolated from bark samples from 28 forests and identified to the species level using DNA metabarcoding. Most communities were dominated by species in the Saccharomycetaceae family, especially by species of <i>Saccharomyces, Kluyveromyces</i> and <i>Pichia</i>. Each genus showed a distinct latitudinal and longitudinal distribution, and both temperature and precipitation metrics predicted significant variation in their abundance. Consistent with this, laboratory assays revealed significant effects of temperature on the growth of strains collected from different longitudes and latitudes. We found that older trees harbour more diverse and more balanced fermentative yeast communities with more evenly distributed species abundances. Communities across trees were more similar when sharing a common dominant species. This work provides a baseline for future studies on the impact of climate change on the fermentative yeast biodiversity of temperate forests in northern latitudes and contributes to a growing collection of wild isolates for potential biotechnological applications.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"17 3","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70110","citationCount":"0","resultStr":"{\"title\":\"Fermentative Yeast Diversity at the Northern Range Limit of Their Oak Tree Hosts\",\"authors\":\"Javier Pinto, Chloé Haberkorn, Markus Franzén, Ayco J. M. Tack, Rike Stelkens\",\"doi\":\"10.1111/1758-2229.70110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fermentative yeasts play important roles in both ecological and industrial processes, but their distribution and abundance in natural environments are not well understood. We investigated the diversity of yeasts at the northern range limit of their oak tree hosts (<i>Quercus</i> spp.) in Sweden, and identified climatic and ecological conditions governing their distribution. Yeasts were isolated from bark samples from 28 forests and identified to the species level using DNA metabarcoding. Most communities were dominated by species in the Saccharomycetaceae family, especially by species of <i>Saccharomyces, Kluyveromyces</i> and <i>Pichia</i>. Each genus showed a distinct latitudinal and longitudinal distribution, and both temperature and precipitation metrics predicted significant variation in their abundance. Consistent with this, laboratory assays revealed significant effects of temperature on the growth of strains collected from different longitudes and latitudes. We found that older trees harbour more diverse and more balanced fermentative yeast communities with more evenly distributed species abundances. Communities across trees were more similar when sharing a common dominant species. This work provides a baseline for future studies on the impact of climate change on the fermentative yeast biodiversity of temperate forests in northern latitudes and contributes to a growing collection of wild isolates for potential biotechnological applications.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70110\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70110\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70110","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Fermentative Yeast Diversity at the Northern Range Limit of Their Oak Tree Hosts
Fermentative yeasts play important roles in both ecological and industrial processes, but their distribution and abundance in natural environments are not well understood. We investigated the diversity of yeasts at the northern range limit of their oak tree hosts (Quercus spp.) in Sweden, and identified climatic and ecological conditions governing their distribution. Yeasts were isolated from bark samples from 28 forests and identified to the species level using DNA metabarcoding. Most communities were dominated by species in the Saccharomycetaceae family, especially by species of Saccharomyces, Kluyveromyces and Pichia. Each genus showed a distinct latitudinal and longitudinal distribution, and both temperature and precipitation metrics predicted significant variation in their abundance. Consistent with this, laboratory assays revealed significant effects of temperature on the growth of strains collected from different longitudes and latitudes. We found that older trees harbour more diverse and more balanced fermentative yeast communities with more evenly distributed species abundances. Communities across trees were more similar when sharing a common dominant species. This work provides a baseline for future studies on the impact of climate change on the fermentative yeast biodiversity of temperate forests in northern latitudes and contributes to a growing collection of wild isolates for potential biotechnological applications.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.