{"title":"用镀铂钛电极对大肠杆菌的电化学失活:两电极和三电极配置的比较","authors":"Panyawut Tonanon, Richard D. Webster","doi":"10.1007/s10008-025-06285-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the feasibility of using platinized titanium electrodes for the electrochemical inactivation of <i>Escherichia coli</i> (<i>E. coli</i>), with the aim of developing an efficient and sustainable water disinfection method in low ionic strength media similar to what exists in potable water. A comparative analysis between two-electrode and three-electrode configurations revealed the superiority of the three-electrode system in achieving higher current throughput and enhanced bacterial inactivation efficiency. This improvement is attributed to the potentiostat’s ability to compensate for solution resistance (<i>IR</i> drop) through the inclusion of the reference electrode, ensuring more stable and controlled electrochemical conditions. The inactivation of <i>E. coli</i> in various electrolyte solutions followed a logarithmic decay pattern (pseudo first-order), with no significant difference observed among the electrolytes tested, except for sodium chloride. The enhanced bactericidal activity in the presence of NaCl was attributed to the generation of chlorine species. These findings provide insights into optimizing electrochemical disinfection systems and highlight the potential of three-electrode configurations for practical water treatment applications in low-conductivity environments.\n</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2024","pages":"2373 - 2383"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical inactivation of Escherichia coli using platinized titanium electrodes: a comparison between two- and three-electrode configurations\",\"authors\":\"Panyawut Tonanon, Richard D. Webster\",\"doi\":\"10.1007/s10008-025-06285-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the feasibility of using platinized titanium electrodes for the electrochemical inactivation of <i>Escherichia coli</i> (<i>E. coli</i>), with the aim of developing an efficient and sustainable water disinfection method in low ionic strength media similar to what exists in potable water. A comparative analysis between two-electrode and three-electrode configurations revealed the superiority of the three-electrode system in achieving higher current throughput and enhanced bacterial inactivation efficiency. This improvement is attributed to the potentiostat’s ability to compensate for solution resistance (<i>IR</i> drop) through the inclusion of the reference electrode, ensuring more stable and controlled electrochemical conditions. The inactivation of <i>E. coli</i> in various electrolyte solutions followed a logarithmic decay pattern (pseudo first-order), with no significant difference observed among the electrolytes tested, except for sodium chloride. The enhanced bactericidal activity in the presence of NaCl was attributed to the generation of chlorine species. These findings provide insights into optimizing electrochemical disinfection systems and highlight the potential of three-electrode configurations for practical water treatment applications in low-conductivity environments.\\n</p></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"29 2024\",\"pages\":\"2373 - 2383\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-025-06285-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-025-06285-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Electrochemical inactivation of Escherichia coli using platinized titanium electrodes: a comparison between two- and three-electrode configurations
This study explores the feasibility of using platinized titanium electrodes for the electrochemical inactivation of Escherichia coli (E. coli), with the aim of developing an efficient and sustainable water disinfection method in low ionic strength media similar to what exists in potable water. A comparative analysis between two-electrode and three-electrode configurations revealed the superiority of the three-electrode system in achieving higher current throughput and enhanced bacterial inactivation efficiency. This improvement is attributed to the potentiostat’s ability to compensate for solution resistance (IR drop) through the inclusion of the reference electrode, ensuring more stable and controlled electrochemical conditions. The inactivation of E. coli in various electrolyte solutions followed a logarithmic decay pattern (pseudo first-order), with no significant difference observed among the electrolytes tested, except for sodium chloride. The enhanced bactericidal activity in the presence of NaCl was attributed to the generation of chlorine species. These findings provide insights into optimizing electrochemical disinfection systems and highlight the potential of three-electrode configurations for practical water treatment applications in low-conductivity environments.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.