{"title":"中国生物肥料产业与研究进展综述","authors":"Xinli Sun, Zhihui Xu, Nan Zhang, Youzhi Miao, Chao Zhang, Xiaoli Ma, Qirong Shen, Ruifu Zhang","doi":"10.1111/1751-7915.70163","DOIUrl":null,"url":null,"abstract":"<p>Reliance on chemical fertilizers has significantly boosted food production in China, but it has also led to soil degradation, environmental pollution, and greenhouse gas emissions. To address these pressing issues, the Chinese government has launched various initiatives to reduce chemical fertilizer consumption and promote biofertilizers as effective alternatives to enhance soil fertility and mitigate environmental pollution. Biofertilizers promote crop growth by providing or activating essential nutrients, suppressing plant pathogens, improving soil health, and increasing resilience to abiotic stresses. The growing adoption of biofertilizers in China is reflected in the registration of more than 10,000 products, an annual production exceeding 35 million tons, and a market value of over US$5.5 billion, indicating a significant shift towards sustainable agricultural practices. Despite this progress, challenges such as the dominance of nitrogen fertilizers, inconsistent product performance, and the need for cultivar-specific microbial inoculants remain. Foundational research on the microbial genera utilised in biofertilizers, including nitrogen-fixing genera <i>Rhizobium</i>, <i>Paenibacillus</i>, and <i>Pseudomonas</i>, the widely used genus, <i>Bacillus</i> and <i>Trichoderma</i>, as well as multipurpose synthetic communities, is essential for overcoming these obstacles and enhancing the efficacy of biofertilizers. This review delves into the historical development of the biofertilizer industry and recent advancements in fundamental research on biofertilizers in China, highlighting the essential role of biofertilizers in promoting green agricultural development.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70163","citationCount":"0","resultStr":"{\"title\":\"Biofertilizer Industry and Research Developments in China: A Mini-Review\",\"authors\":\"Xinli Sun, Zhihui Xu, Nan Zhang, Youzhi Miao, Chao Zhang, Xiaoli Ma, Qirong Shen, Ruifu Zhang\",\"doi\":\"10.1111/1751-7915.70163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reliance on chemical fertilizers has significantly boosted food production in China, but it has also led to soil degradation, environmental pollution, and greenhouse gas emissions. To address these pressing issues, the Chinese government has launched various initiatives to reduce chemical fertilizer consumption and promote biofertilizers as effective alternatives to enhance soil fertility and mitigate environmental pollution. Biofertilizers promote crop growth by providing or activating essential nutrients, suppressing plant pathogens, improving soil health, and increasing resilience to abiotic stresses. The growing adoption of biofertilizers in China is reflected in the registration of more than 10,000 products, an annual production exceeding 35 million tons, and a market value of over US$5.5 billion, indicating a significant shift towards sustainable agricultural practices. Despite this progress, challenges such as the dominance of nitrogen fertilizers, inconsistent product performance, and the need for cultivar-specific microbial inoculants remain. Foundational research on the microbial genera utilised in biofertilizers, including nitrogen-fixing genera <i>Rhizobium</i>, <i>Paenibacillus</i>, and <i>Pseudomonas</i>, the widely used genus, <i>Bacillus</i> and <i>Trichoderma</i>, as well as multipurpose synthetic communities, is essential for overcoming these obstacles and enhancing the efficacy of biofertilizers. This review delves into the historical development of the biofertilizer industry and recent advancements in fundamental research on biofertilizers in China, highlighting the essential role of biofertilizers in promoting green agricultural development.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 5\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70163\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70163\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70163","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biofertilizer Industry and Research Developments in China: A Mini-Review
Reliance on chemical fertilizers has significantly boosted food production in China, but it has also led to soil degradation, environmental pollution, and greenhouse gas emissions. To address these pressing issues, the Chinese government has launched various initiatives to reduce chemical fertilizer consumption and promote biofertilizers as effective alternatives to enhance soil fertility and mitigate environmental pollution. Biofertilizers promote crop growth by providing or activating essential nutrients, suppressing plant pathogens, improving soil health, and increasing resilience to abiotic stresses. The growing adoption of biofertilizers in China is reflected in the registration of more than 10,000 products, an annual production exceeding 35 million tons, and a market value of over US$5.5 billion, indicating a significant shift towards sustainable agricultural practices. Despite this progress, challenges such as the dominance of nitrogen fertilizers, inconsistent product performance, and the need for cultivar-specific microbial inoculants remain. Foundational research on the microbial genera utilised in biofertilizers, including nitrogen-fixing genera Rhizobium, Paenibacillus, and Pseudomonas, the widely used genus, Bacillus and Trichoderma, as well as multipurpose synthetic communities, is essential for overcoming these obstacles and enhancing the efficacy of biofertilizers. This review delves into the historical development of the biofertilizer industry and recent advancements in fundamental research on biofertilizers in China, highlighting the essential role of biofertilizers in promoting green agricultural development.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes