{"title":"H/C摩尔比及其测定生物炭持久性的潜在缺陷","authors":"Henrik I. Petersen, Hamed Sanei","doi":"10.1111/gcbb.70049","DOIUrl":null,"url":null,"abstract":"<p>Biochar carbon removal (BCR) is widely recognized as a globally feasible technique for removing CO<sub>2</sub> from the atmosphere and storing carbon in a stable form within the environment. The hydrogen-to-carbon (H/C) molar ratio serves as the primary proxy for classifying biochar into different quality categories and is a key parameter in decay models used to estimate its long-term stability. In the context of climate credit systems that rely on biochar for carbon sequestration, an accurate assessment of biochar's carbon pools and permanence is crucial. The results of this study confirm that the H/C molar ratio is a robust bulk geochemical proxy for biochar carbonization. However, its use as a standalone benchmark for biochar permanence should be approached with caution. To ensure a more comprehensive assessment, the H/C molar ratio should be combined with the random reflectance (R<sub>o</sub>) method, which provides spatially resolved insights into the degree of carbonization within a biochar sample. Relying exclusively on a single bulk H/C molar ratio may, in some cases, lead to inaccurate determinations of biochar's carbon storage security. Such limitations could undermine the credibility of climate credit systems that depend on biochar for permanent carbon dioxide removal. Therefore, integrating both H/C ratio and R<sub>o</sub> analysis is essential for accurately evaluating biochar stability and its long-term carbon sequestration potential.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 6","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70049","citationCount":"0","resultStr":"{\"title\":\"The H/C Molar Ratio and Its Potential Pitfalls for Determining Biochar's Permanence\",\"authors\":\"Henrik I. Petersen, Hamed Sanei\",\"doi\":\"10.1111/gcbb.70049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biochar carbon removal (BCR) is widely recognized as a globally feasible technique for removing CO<sub>2</sub> from the atmosphere and storing carbon in a stable form within the environment. The hydrogen-to-carbon (H/C) molar ratio serves as the primary proxy for classifying biochar into different quality categories and is a key parameter in decay models used to estimate its long-term stability. In the context of climate credit systems that rely on biochar for carbon sequestration, an accurate assessment of biochar's carbon pools and permanence is crucial. The results of this study confirm that the H/C molar ratio is a robust bulk geochemical proxy for biochar carbonization. However, its use as a standalone benchmark for biochar permanence should be approached with caution. To ensure a more comprehensive assessment, the H/C molar ratio should be combined with the random reflectance (R<sub>o</sub>) method, which provides spatially resolved insights into the degree of carbonization within a biochar sample. Relying exclusively on a single bulk H/C molar ratio may, in some cases, lead to inaccurate determinations of biochar's carbon storage security. Such limitations could undermine the credibility of climate credit systems that depend on biochar for permanent carbon dioxide removal. Therefore, integrating both H/C ratio and R<sub>o</sub> analysis is essential for accurately evaluating biochar stability and its long-term carbon sequestration potential.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70049\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70049\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70049","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
The H/C Molar Ratio and Its Potential Pitfalls for Determining Biochar's Permanence
Biochar carbon removal (BCR) is widely recognized as a globally feasible technique for removing CO2 from the atmosphere and storing carbon in a stable form within the environment. The hydrogen-to-carbon (H/C) molar ratio serves as the primary proxy for classifying biochar into different quality categories and is a key parameter in decay models used to estimate its long-term stability. In the context of climate credit systems that rely on biochar for carbon sequestration, an accurate assessment of biochar's carbon pools and permanence is crucial. The results of this study confirm that the H/C molar ratio is a robust bulk geochemical proxy for biochar carbonization. However, its use as a standalone benchmark for biochar permanence should be approached with caution. To ensure a more comprehensive assessment, the H/C molar ratio should be combined with the random reflectance (Ro) method, which provides spatially resolved insights into the degree of carbonization within a biochar sample. Relying exclusively on a single bulk H/C molar ratio may, in some cases, lead to inaccurate determinations of biochar's carbon storage security. Such limitations could undermine the credibility of climate credit systems that depend on biochar for permanent carbon dioxide removal. Therefore, integrating both H/C ratio and Ro analysis is essential for accurately evaluating biochar stability and its long-term carbon sequestration potential.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.