电极表面微滴中的氧化还原催化反应速率是否加快?

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY
Nathan S. Lawrence, Jay D. Wadhawan
{"title":"电极表面微滴中的氧化还原催化反应速率是否加快?","authors":"Nathan S. Lawrence,&nbsp;Jay D. Wadhawan","doi":"10.1007/s10008-025-06283-4","DOIUrl":null,"url":null,"abstract":"<div><p>Homogeneous redox catalysis within electrochemically supported microdroplets immobilised on an electrode surface and bathed by an immiscible electrolyte solution is characterised using finite difference numerical methods, after conformal transformation of the physical problem. This is shown to be a challenging environment to simulate and model, not least due to the confinement of the heterogeneous electron transfer to the droplet/support/electrolyte boundary, and hence leading to acute convergent/divergent diffusion regimes. Reactivity at the triple phase boundary underpins both the spatial and temporal non-uniformity of the reacting droplet environment. Crucially, through comparison with experimental data reported in the literature, it is demonstrated that <i>there is no droplet-induced acceleration of the redox catalytic reaction.</i> Reasons for this discrepancy with literature are suggested. It is recommended that any inference of reaction rate acceleration through increased rate constants in microdroplets on surfaces be re-examined, lest the multi-dimensional dynamics at the three-phase boundary are unaccounted.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2024","pages":"2321 - 2334"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10008-025-06283-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Are redox catalytic reaction rates accelerated in microdroplets on electrode surfaces?\",\"authors\":\"Nathan S. Lawrence,&nbsp;Jay D. Wadhawan\",\"doi\":\"10.1007/s10008-025-06283-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Homogeneous redox catalysis within electrochemically supported microdroplets immobilised on an electrode surface and bathed by an immiscible electrolyte solution is characterised using finite difference numerical methods, after conformal transformation of the physical problem. This is shown to be a challenging environment to simulate and model, not least due to the confinement of the heterogeneous electron transfer to the droplet/support/electrolyte boundary, and hence leading to acute convergent/divergent diffusion regimes. Reactivity at the triple phase boundary underpins both the spatial and temporal non-uniformity of the reacting droplet environment. Crucially, through comparison with experimental data reported in the literature, it is demonstrated that <i>there is no droplet-induced acceleration of the redox catalytic reaction.</i> Reasons for this discrepancy with literature are suggested. It is recommended that any inference of reaction rate acceleration through increased rate constants in microdroplets on surfaces be re-examined, lest the multi-dimensional dynamics at the three-phase boundary are unaccounted.</p></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"29 2024\",\"pages\":\"2321 - 2334\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10008-025-06283-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-025-06283-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-025-06283-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在物理问题的保角变换之后,使用有限差分数值方法表征了固定在电极表面并被不混溶电解质溶液浸泡的电化学支持微滴内的均相氧化还原催化。这被证明是一个具有挑战性的环境来模拟和建模,尤其是由于非均相电子转移到液滴/载体/电解质边界的限制,从而导致急性收敛/发散扩散制度。三相边界处的反应性决定了反应液滴环境的时空不均匀性。至关重要的是,通过与文献中报道的实验数据的比较,证明了不存在液滴诱导的氧化还原催化反应加速。提出了与文献不符的原因。建议通过增加表面上微滴的速率常数来推断反应速率加速,以免三相边界的多维动力学无法解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are redox catalytic reaction rates accelerated in microdroplets on electrode surfaces?

Homogeneous redox catalysis within electrochemically supported microdroplets immobilised on an electrode surface and bathed by an immiscible electrolyte solution is characterised using finite difference numerical methods, after conformal transformation of the physical problem. This is shown to be a challenging environment to simulate and model, not least due to the confinement of the heterogeneous electron transfer to the droplet/support/electrolyte boundary, and hence leading to acute convergent/divergent diffusion regimes. Reactivity at the triple phase boundary underpins both the spatial and temporal non-uniformity of the reacting droplet environment. Crucially, through comparison with experimental data reported in the literature, it is demonstrated that there is no droplet-induced acceleration of the redox catalytic reaction. Reasons for this discrepancy with literature are suggested. It is recommended that any inference of reaction rate acceleration through increased rate constants in microdroplets on surfaces be re-examined, lest the multi-dimensional dynamics at the three-phase boundary are unaccounted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信