{"title":"电极表面微滴中的氧化还原催化反应速率是否加快?","authors":"Nathan S. Lawrence, Jay D. Wadhawan","doi":"10.1007/s10008-025-06283-4","DOIUrl":null,"url":null,"abstract":"<div><p>Homogeneous redox catalysis within electrochemically supported microdroplets immobilised on an electrode surface and bathed by an immiscible electrolyte solution is characterised using finite difference numerical methods, after conformal transformation of the physical problem. This is shown to be a challenging environment to simulate and model, not least due to the confinement of the heterogeneous electron transfer to the droplet/support/electrolyte boundary, and hence leading to acute convergent/divergent diffusion regimes. Reactivity at the triple phase boundary underpins both the spatial and temporal non-uniformity of the reacting droplet environment. Crucially, through comparison with experimental data reported in the literature, it is demonstrated that <i>there is no droplet-induced acceleration of the redox catalytic reaction.</i> Reasons for this discrepancy with literature are suggested. It is recommended that any inference of reaction rate acceleration through increased rate constants in microdroplets on surfaces be re-examined, lest the multi-dimensional dynamics at the three-phase boundary are unaccounted.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2024","pages":"2321 - 2334"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10008-025-06283-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Are redox catalytic reaction rates accelerated in microdroplets on electrode surfaces?\",\"authors\":\"Nathan S. Lawrence, Jay D. Wadhawan\",\"doi\":\"10.1007/s10008-025-06283-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Homogeneous redox catalysis within electrochemically supported microdroplets immobilised on an electrode surface and bathed by an immiscible electrolyte solution is characterised using finite difference numerical methods, after conformal transformation of the physical problem. This is shown to be a challenging environment to simulate and model, not least due to the confinement of the heterogeneous electron transfer to the droplet/support/electrolyte boundary, and hence leading to acute convergent/divergent diffusion regimes. Reactivity at the triple phase boundary underpins both the spatial and temporal non-uniformity of the reacting droplet environment. Crucially, through comparison with experimental data reported in the literature, it is demonstrated that <i>there is no droplet-induced acceleration of the redox catalytic reaction.</i> Reasons for this discrepancy with literature are suggested. It is recommended that any inference of reaction rate acceleration through increased rate constants in microdroplets on surfaces be re-examined, lest the multi-dimensional dynamics at the three-phase boundary are unaccounted.</p></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"29 2024\",\"pages\":\"2321 - 2334\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10008-025-06283-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-025-06283-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-025-06283-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Are redox catalytic reaction rates accelerated in microdroplets on electrode surfaces?
Homogeneous redox catalysis within electrochemically supported microdroplets immobilised on an electrode surface and bathed by an immiscible electrolyte solution is characterised using finite difference numerical methods, after conformal transformation of the physical problem. This is shown to be a challenging environment to simulate and model, not least due to the confinement of the heterogeneous electron transfer to the droplet/support/electrolyte boundary, and hence leading to acute convergent/divergent diffusion regimes. Reactivity at the triple phase boundary underpins both the spatial and temporal non-uniformity of the reacting droplet environment. Crucially, through comparison with experimental data reported in the literature, it is demonstrated that there is no droplet-induced acceleration of the redox catalytic reaction. Reasons for this discrepancy with literature are suggested. It is recommended that any inference of reaction rate acceleration through increased rate constants in microdroplets on surfaces be re-examined, lest the multi-dimensional dynamics at the three-phase boundary are unaccounted.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.