{"title":"赤铁矿光电化学析氧动力学的探索性分析","authors":"Laurence M. Peter","doi":"10.1007/s10008-025-06221-4","DOIUrl":null,"url":null,"abstract":"<div><p>The kinetics of the photoelectrochemical oxygen evolution reaction (POER) on hematite photoanodes are explored using a simple reaction scheme involving an initial pre-equilibrium hole/proton transfer step to form an Fe(IV) surface species, Fe = O, followed by a rate-determining hole/proton transfer step to form the Fe(II) peroxo species, FeOOH, which then reacts rapidly with two more holes to form oxygen. The modelling considers how the kinetics of these two reaction steps are affected by changes in <span>\\({V}_{\\text{H}}\\)</span>, the potential drop across the Helmholtz layer that arises from the build-up of positive charge at the interface under illumination. The model, which also considers electron–hole recombination and back reaction of Fe = O with conduction band electrons, is used to calculate steady-state photocurrent/voltage characteristics, pseudocapacitance-voltage plots, and transient absorbance (TAS) responses that can be compared with published results. The model is also used to show that the slopes of double logarithmic reaction order plots of photocurrent vs. hole or reaction intermediate concentrations are influenced by light-induced changes in <span>\\({V}_{\\text{H}}\\)</span>. The insights from this analysis should be relevant to the ongoing discussion of multi-hole mechanisms for the POER on hematite photoanodes.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 2024","pages":"2141 - 2155"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10008-025-06221-4.pdf","citationCount":"0","resultStr":"{\"title\":\"An exploratory kinetic analysis of photoelectrochemical oxygen evolution on hematite\",\"authors\":\"Laurence M. Peter\",\"doi\":\"10.1007/s10008-025-06221-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The kinetics of the photoelectrochemical oxygen evolution reaction (POER) on hematite photoanodes are explored using a simple reaction scheme involving an initial pre-equilibrium hole/proton transfer step to form an Fe(IV) surface species, Fe = O, followed by a rate-determining hole/proton transfer step to form the Fe(II) peroxo species, FeOOH, which then reacts rapidly with two more holes to form oxygen. The modelling considers how the kinetics of these two reaction steps are affected by changes in <span>\\\\({V}_{\\\\text{H}}\\\\)</span>, the potential drop across the Helmholtz layer that arises from the build-up of positive charge at the interface under illumination. The model, which also considers electron–hole recombination and back reaction of Fe = O with conduction band electrons, is used to calculate steady-state photocurrent/voltage characteristics, pseudocapacitance-voltage plots, and transient absorbance (TAS) responses that can be compared with published results. The model is also used to show that the slopes of double logarithmic reaction order plots of photocurrent vs. hole or reaction intermediate concentrations are influenced by light-induced changes in <span>\\\\({V}_{\\\\text{H}}\\\\)</span>. The insights from this analysis should be relevant to the ongoing discussion of multi-hole mechanisms for the POER on hematite photoanodes.</p></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"29 2024\",\"pages\":\"2141 - 2155\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10008-025-06221-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-025-06221-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-025-06221-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
An exploratory kinetic analysis of photoelectrochemical oxygen evolution on hematite
The kinetics of the photoelectrochemical oxygen evolution reaction (POER) on hematite photoanodes are explored using a simple reaction scheme involving an initial pre-equilibrium hole/proton transfer step to form an Fe(IV) surface species, Fe = O, followed by a rate-determining hole/proton transfer step to form the Fe(II) peroxo species, FeOOH, which then reacts rapidly with two more holes to form oxygen. The modelling considers how the kinetics of these two reaction steps are affected by changes in \({V}_{\text{H}}\), the potential drop across the Helmholtz layer that arises from the build-up of positive charge at the interface under illumination. The model, which also considers electron–hole recombination and back reaction of Fe = O with conduction band electrons, is used to calculate steady-state photocurrent/voltage characteristics, pseudocapacitance-voltage plots, and transient absorbance (TAS) responses that can be compared with published results. The model is also used to show that the slopes of double logarithmic reaction order plots of photocurrent vs. hole or reaction intermediate concentrations are influenced by light-induced changes in \({V}_{\text{H}}\). The insights from this analysis should be relevant to the ongoing discussion of multi-hole mechanisms for the POER on hematite photoanodes.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.