Troels Harmark, Johannes Lahnsteiner, Niels A. Obers
{"title":"引力孤子和非相对论性弦理论","authors":"Troels Harmark, Johannes Lahnsteiner, Niels A. Obers","doi":"10.1007/JHEP05(2025)199","DOIUrl":null,"url":null,"abstract":"<p>We explore the non-relativistic string theory (NRST) limit of type II string theory and its action on gravitational solitons. As a start, we exhibit in detail that the NRST limit is T-dual to a discrete lightcone limit and can be viewed as a near-BPS limit. This also clarifies the nature of multi-string states of NRST and its connection to matrix string theory. We consider the NRST limit of the fundamental string soliton, confirming the recent finding that it corresponds to a relativistic near-horizon background, which we argue is the manifestation of a strong coupling phase of the NRST worldsheet theory. Furthermore, we consider the NRST limit of a class of D-branes as well as the NS5-brane. This reveals that they become gravitational solitons in NRST, as they are sourced torsional string Newton-Cartan (TSNC) geometries. Finally, for the NRST D-brane solitons we show that a further decoupling limit leads to new holographic correspondences between multicritical matrix theories and NRST in curved TSNC backgrounds.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)199.pdf","citationCount":"0","resultStr":"{\"title\":\"Gravitational solitons and non-relativistic string theory\",\"authors\":\"Troels Harmark, Johannes Lahnsteiner, Niels A. Obers\",\"doi\":\"10.1007/JHEP05(2025)199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We explore the non-relativistic string theory (NRST) limit of type II string theory and its action on gravitational solitons. As a start, we exhibit in detail that the NRST limit is T-dual to a discrete lightcone limit and can be viewed as a near-BPS limit. This also clarifies the nature of multi-string states of NRST and its connection to matrix string theory. We consider the NRST limit of the fundamental string soliton, confirming the recent finding that it corresponds to a relativistic near-horizon background, which we argue is the manifestation of a strong coupling phase of the NRST worldsheet theory. Furthermore, we consider the NRST limit of a class of D-branes as well as the NS5-brane. This reveals that they become gravitational solitons in NRST, as they are sourced torsional string Newton-Cartan (TSNC) geometries. Finally, for the NRST D-brane solitons we show that a further decoupling limit leads to new holographic correspondences between multicritical matrix theories and NRST in curved TSNC backgrounds.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)199.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)199\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)199","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Gravitational solitons and non-relativistic string theory
We explore the non-relativistic string theory (NRST) limit of type II string theory and its action on gravitational solitons. As a start, we exhibit in detail that the NRST limit is T-dual to a discrete lightcone limit and can be viewed as a near-BPS limit. This also clarifies the nature of multi-string states of NRST and its connection to matrix string theory. We consider the NRST limit of the fundamental string soliton, confirming the recent finding that it corresponds to a relativistic near-horizon background, which we argue is the manifestation of a strong coupling phase of the NRST worldsheet theory. Furthermore, we consider the NRST limit of a class of D-branes as well as the NS5-brane. This reveals that they become gravitational solitons in NRST, as they are sourced torsional string Newton-Cartan (TSNC) geometries. Finally, for the NRST D-brane solitons we show that a further decoupling limit leads to new holographic correspondences between multicritical matrix theories and NRST in curved TSNC backgrounds.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).