{"title":"HTPB推进剂拉压不对称力学性能及本构模型","authors":"Pai Peng, Zijian Fan, Peng Yu, Zhibin Shen","doi":"10.1007/s10443-025-10305-9","DOIUrl":null,"url":null,"abstract":"<div><p>The solid propellant is a particle-reinforced material with significant tension-compression asymmetry. Based on the constant-speed tensile test, constant-speed compression test, and cross-sectional SEM scanning test, this study investigated the differences in the mechanical properties of the HTPB propellant under tensile and compressive loading and the underlying mechanisms. The results show that the tensile strength of HTPB propellant is much smaller than compressive strength. According to the SEM test results of the failure surface, the tensile mechanical properties of the propellant are mainly affected by matrix, and the influence of particles on the mechanical properties is more obvious during the compression process. According to test data, a tension-compression integrated nonlinear constitutive model was constructed, and its application in simulation calculation was realized. The results show that the theoretical, simulation calculation and test results are in good agreement. At 15% strain, the maximum error between the theoretical results and the experimental curve is 9.1% and 4.8% respectively in the process of tension and compression. Therefore, the model can accurately describe the stress-strain relationship of HTPB propellant under different strain rates of tensile and compression. This model can provide theoretical support for accurately evaluating the structural integrity of SRMs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"32 3","pages":"1183 - 1196"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile-Compressive Asymmetric Mechanical Properties and Constitutive Model of HTPB Propellant\",\"authors\":\"Pai Peng, Zijian Fan, Peng Yu, Zhibin Shen\",\"doi\":\"10.1007/s10443-025-10305-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solid propellant is a particle-reinforced material with significant tension-compression asymmetry. Based on the constant-speed tensile test, constant-speed compression test, and cross-sectional SEM scanning test, this study investigated the differences in the mechanical properties of the HTPB propellant under tensile and compressive loading and the underlying mechanisms. The results show that the tensile strength of HTPB propellant is much smaller than compressive strength. According to the SEM test results of the failure surface, the tensile mechanical properties of the propellant are mainly affected by matrix, and the influence of particles on the mechanical properties is more obvious during the compression process. According to test data, a tension-compression integrated nonlinear constitutive model was constructed, and its application in simulation calculation was realized. The results show that the theoretical, simulation calculation and test results are in good agreement. At 15% strain, the maximum error between the theoretical results and the experimental curve is 9.1% and 4.8% respectively in the process of tension and compression. Therefore, the model can accurately describe the stress-strain relationship of HTPB propellant under different strain rates of tensile and compression. This model can provide theoretical support for accurately evaluating the structural integrity of SRMs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"32 3\",\"pages\":\"1183 - 1196\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-025-10305-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-025-10305-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Tensile-Compressive Asymmetric Mechanical Properties and Constitutive Model of HTPB Propellant
The solid propellant is a particle-reinforced material with significant tension-compression asymmetry. Based on the constant-speed tensile test, constant-speed compression test, and cross-sectional SEM scanning test, this study investigated the differences in the mechanical properties of the HTPB propellant under tensile and compressive loading and the underlying mechanisms. The results show that the tensile strength of HTPB propellant is much smaller than compressive strength. According to the SEM test results of the failure surface, the tensile mechanical properties of the propellant are mainly affected by matrix, and the influence of particles on the mechanical properties is more obvious during the compression process. According to test data, a tension-compression integrated nonlinear constitutive model was constructed, and its application in simulation calculation was realized. The results show that the theoretical, simulation calculation and test results are in good agreement. At 15% strain, the maximum error between the theoretical results and the experimental curve is 9.1% and 4.8% respectively in the process of tension and compression. Therefore, the model can accurately describe the stress-strain relationship of HTPB propellant under different strain rates of tensile and compression. This model can provide theoretical support for accurately evaluating the structural integrity of SRMs.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.