{"title":"马尔可夫链非指数遍历的路径法及其在化学反应系统中的应用","authors":"Minjun Kim, Jinsu Kim","doi":"10.1007/s10955-025-03453-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present criteria for non-exponential ergodicity of continuous-time Markov chains on a countable state space in total variation norm. These criteria can be verified by examining the ratio of transition rates over certain paths. We applied this path method to explore the non-exponential convergence of microscopic biochemical interacting systems. Using reaction network descriptions, we identified special architectures of biochemical systems for non-exponential ergodicity. In essence, we found that reactions forming a cycle in the reaction network can induce non-exponential ergodicity when they significantly dominate other reactions across infinitely many regions of the state space. Interestingly, the special architectures allowed us to construct many detailed balanced and complex balanced biochemical systems that are non-exponentially ergodic. Some of these models are low-dimensional bimolecular systems with few reactions. Thus this work suggests the possibility of discovering or synthesizing stochastic systems arising in biochemistry that possess either detailed balancing or complex balancing and slowly converge to their stationary distribution.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Path Method for Non-exponential Ergodicity of Markov Chains and Its Application for Chemical Reaction Systems\",\"authors\":\"Minjun Kim, Jinsu Kim\",\"doi\":\"10.1007/s10955-025-03453-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present criteria for non-exponential ergodicity of continuous-time Markov chains on a countable state space in total variation norm. These criteria can be verified by examining the ratio of transition rates over certain paths. We applied this path method to explore the non-exponential convergence of microscopic biochemical interacting systems. Using reaction network descriptions, we identified special architectures of biochemical systems for non-exponential ergodicity. In essence, we found that reactions forming a cycle in the reaction network can induce non-exponential ergodicity when they significantly dominate other reactions across infinitely many regions of the state space. Interestingly, the special architectures allowed us to construct many detailed balanced and complex balanced biochemical systems that are non-exponentially ergodic. Some of these models are low-dimensional bimolecular systems with few reactions. Thus this work suggests the possibility of discovering or synthesizing stochastic systems arising in biochemistry that possess either detailed balancing or complex balancing and slowly converge to their stationary distribution.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 6\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03453-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03453-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
A Path Method for Non-exponential Ergodicity of Markov Chains and Its Application for Chemical Reaction Systems
In this paper, we present criteria for non-exponential ergodicity of continuous-time Markov chains on a countable state space in total variation norm. These criteria can be verified by examining the ratio of transition rates over certain paths. We applied this path method to explore the non-exponential convergence of microscopic biochemical interacting systems. Using reaction network descriptions, we identified special architectures of biochemical systems for non-exponential ergodicity. In essence, we found that reactions forming a cycle in the reaction network can induce non-exponential ergodicity when they significantly dominate other reactions across infinitely many regions of the state space. Interestingly, the special architectures allowed us to construct many detailed balanced and complex balanced biochemical systems that are non-exponentially ergodic. Some of these models are low-dimensional bimolecular systems with few reactions. Thus this work suggests the possibility of discovering or synthesizing stochastic systems arising in biochemistry that possess either detailed balancing or complex balancing and slowly converge to their stationary distribution.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.