数据驱动的输入输出控制屏障函数

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS
Mohammad Bajelani;Klaske van Heusden
{"title":"数据驱动的输入输出控制屏障函数","authors":"Mohammad Bajelani;Klaske van Heusden","doi":"10.1109/LCSYS.2025.3569701","DOIUrl":null,"url":null,"abstract":"Control Barrier Functions (CBFs) offer a framework for ensuring set invariance and designing constrained control laws. However, crafting a valid CBF relies on system-specific assumptions and the availability of an accurate system model, underscoring the need for systematic data-driven synthesis methods. This letter introduces a data-driven approach to synthesizing a CBF for discrete-time LTI systems using only input-output measurements. The method begins by computing the maximal control invariant set using an input-output data-driven representation, eliminating the need for precise knowledge of the system’s order and explicit state estimation. The proposed CBF is then systematically derived from this set, which can accommodate multiple input-output constraints. Furthermore, the proposed CBF is leveraged to develop a minimally invasive safety filter that ensures recursive feasibility with an adaptive decay rate. To improve clarity, we assume a noise-free dataset, though the method can be extended using data-driven reachability to capture noise effects and handle uncertainty. Finally, the effectiveness of the proposed method is demonstrated on an unknown time-delay system.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"216-221"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Input-Output Control Barrier Functions\",\"authors\":\"Mohammad Bajelani;Klaske van Heusden\",\"doi\":\"10.1109/LCSYS.2025.3569701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control Barrier Functions (CBFs) offer a framework for ensuring set invariance and designing constrained control laws. However, crafting a valid CBF relies on system-specific assumptions and the availability of an accurate system model, underscoring the need for systematic data-driven synthesis methods. This letter introduces a data-driven approach to synthesizing a CBF for discrete-time LTI systems using only input-output measurements. The method begins by computing the maximal control invariant set using an input-output data-driven representation, eliminating the need for precise knowledge of the system’s order and explicit state estimation. The proposed CBF is then systematically derived from this set, which can accommodate multiple input-output constraints. Furthermore, the proposed CBF is leveraged to develop a minimally invasive safety filter that ensures recursive feasibility with an adaptive decay rate. To improve clarity, we assume a noise-free dataset, though the method can be extended using data-driven reachability to capture noise effects and handle uncertainty. Finally, the effectiveness of the proposed method is demonstrated on an unknown time-delay system.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"216-221\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11003076/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11003076/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

控制障碍函数(cbf)为保证集合不变性和设计约束控制律提供了一个框架。然而,制定有效的CBF依赖于系统特定的假设和准确系统模型的可用性,这强调了对系统数据驱动的综合方法的需求。本文介绍了一种数据驱动的方法,用于仅使用输入输出测量来合成离散时间LTI系统的CBF。该方法首先使用输入-输出数据驱动表示计算最大控制不变量集,消除了对系统顺序和显式状态估计的精确知识的需要。然后从该集合系统地推导出提议的CBF,它可以容纳多个输入输出约束。此外,所提出的CBF被用于开发一种微创安全滤波器,以确保递归的可行性和自适应衰减率。为了提高清晰度,我们假设一个无噪声的数据集,尽管该方法可以使用数据驱动的可达性来扩展以捕获噪声影响并处理不确定性。最后,在一个未知时滞系统上验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Input-Output Control Barrier Functions
Control Barrier Functions (CBFs) offer a framework for ensuring set invariance and designing constrained control laws. However, crafting a valid CBF relies on system-specific assumptions and the availability of an accurate system model, underscoring the need for systematic data-driven synthesis methods. This letter introduces a data-driven approach to synthesizing a CBF for discrete-time LTI systems using only input-output measurements. The method begins by computing the maximal control invariant set using an input-output data-driven representation, eliminating the need for precise knowledge of the system’s order and explicit state estimation. The proposed CBF is then systematically derived from this set, which can accommodate multiple input-output constraints. Furthermore, the proposed CBF is leveraged to develop a minimally invasive safety filter that ensures recursive feasibility with an adaptive decay rate. To improve clarity, we assume a noise-free dataset, though the method can be extended using data-driven reachability to capture noise effects and handle uncertainty. Finally, the effectiveness of the proposed method is demonstrated on an unknown time-delay system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信