用不同尺寸的六方氮化硼构建无粘结剂的三维热网络以增强聚二甲基硅氧烷复合材料:一项比较研究†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-05-23 DOI:10.1039/D5RA01204J
Liping Han, Hu Sun, Wei Li, Li Liu, Guoyou Gan, Zhuo Qian and Junpeng Li
{"title":"用不同尺寸的六方氮化硼构建无粘结剂的三维热网络以增强聚二甲基硅氧烷复合材料:一项比较研究†","authors":"Liping Han, Hu Sun, Wei Li, Li Liu, Guoyou Gan, Zhuo Qian and Junpeng Li","doi":"10.1039/D5RA01204J","DOIUrl":null,"url":null,"abstract":"<p >As electronic devices become more compact and power-dense, the demand for efficient thermal management materials continues to rise. To address the common issues in conventional thermally conductive composites—namely, poor filler dispersion, high interfacial thermal resistance caused by binders, and complex fabrication processes—this study proposes a novel strategy for constructing binder-free three-dimensional hexagonal boron nitride thermal networks (3D BN) within a polydimethylsiloxane (PDMS) matrix. By leveraging the decomposition behavior of ammonium bicarbonate (NH<small><sub>4</sub></small>HCO<small><sub>3</sub></small>), this approach enables the fabrication of composites with enhanced thermal conductivity and simplified processing. The 3D BN/PDMS composites were prepared <em>via</em> a straightforward process involving blending, cold pressing, drying, and vacuum impregnation. Characterization and testing reveal that the 3D BN thermal network and BN particle size are critical factors influencing the composites' TCs. The resulting 3D BN/PDMS composites exhibit an outstanding TC of 3.889 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> when the BN particle size is 20 μm and the filler content is 40.70 vol%. This study offers a novel approach to designing and developing high-performance thermally conductive composites, with significant potential for practical applications.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 22","pages":" 17388-17396"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01204j?page=search","citationCount":"0","resultStr":"{\"title\":\"Constructing binder-free 3D thermal networks with hexagonal boron nitride of varying sizes to enhance polydimethylsiloxane composites: a comparative study†\",\"authors\":\"Liping Han, Hu Sun, Wei Li, Li Liu, Guoyou Gan, Zhuo Qian and Junpeng Li\",\"doi\":\"10.1039/D5RA01204J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As electronic devices become more compact and power-dense, the demand for efficient thermal management materials continues to rise. To address the common issues in conventional thermally conductive composites—namely, poor filler dispersion, high interfacial thermal resistance caused by binders, and complex fabrication processes—this study proposes a novel strategy for constructing binder-free three-dimensional hexagonal boron nitride thermal networks (3D BN) within a polydimethylsiloxane (PDMS) matrix. By leveraging the decomposition behavior of ammonium bicarbonate (NH<small><sub>4</sub></small>HCO<small><sub>3</sub></small>), this approach enables the fabrication of composites with enhanced thermal conductivity and simplified processing. The 3D BN/PDMS composites were prepared <em>via</em> a straightforward process involving blending, cold pressing, drying, and vacuum impregnation. Characterization and testing reveal that the 3D BN thermal network and BN particle size are critical factors influencing the composites' TCs. The resulting 3D BN/PDMS composites exhibit an outstanding TC of 3.889 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> when the BN particle size is 20 μm and the filler content is 40.70 vol%. This study offers a novel approach to designing and developing high-performance thermally conductive composites, with significant potential for practical applications.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 22\",\"pages\":\" 17388-17396\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01204j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01204j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01204j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着电子设备变得更加紧凑和功率密集,对高效热管理材料的需求持续上升。为了解决传统导热复合材料的常见问题,即填料分散性差,粘合剂引起的界面热阻高,以及复杂的制造工艺,本研究提出了一种在聚二甲基硅氧烷(PDMS)基体中构建无粘合剂的三维六方氮化硼热网络(3D BN)的新策略。通过利用碳酸氢铵(NH4HCO3)的分解行为,该方法可以制造具有增强导热性和简化加工的复合材料。3D BN/PDMS复合材料的制备过程简单,包括混合、冷压、干燥和真空浸渍。表征和测试表明,三维氮化硼热网络和氮化硼粒径是影响复合材料TCs的关键因素。当BN粒径为20 μm,填料含量为40.70 vol%时,制备的三维BN/PDMS复合材料的TC值为3.889 W m−1 K−1。该研究为设计和开发高性能导热复合材料提供了一种新的方法,具有重要的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing binder-free 3D thermal networks with hexagonal boron nitride of varying sizes to enhance polydimethylsiloxane composites: a comparative study†

As electronic devices become more compact and power-dense, the demand for efficient thermal management materials continues to rise. To address the common issues in conventional thermally conductive composites—namely, poor filler dispersion, high interfacial thermal resistance caused by binders, and complex fabrication processes—this study proposes a novel strategy for constructing binder-free three-dimensional hexagonal boron nitride thermal networks (3D BN) within a polydimethylsiloxane (PDMS) matrix. By leveraging the decomposition behavior of ammonium bicarbonate (NH4HCO3), this approach enables the fabrication of composites with enhanced thermal conductivity and simplified processing. The 3D BN/PDMS composites were prepared via a straightforward process involving blending, cold pressing, drying, and vacuum impregnation. Characterization and testing reveal that the 3D BN thermal network and BN particle size are critical factors influencing the composites' TCs. The resulting 3D BN/PDMS composites exhibit an outstanding TC of 3.889 W m−1 K−1 when the BN particle size is 20 μm and the filler content is 40.70 vol%. This study offers a novel approach to designing and developing high-performance thermally conductive composites, with significant potential for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信