{"title":"基于pva的3D生物打印生物墨水:其在组织工程中的应用综述","authors":"Narges Johari , Zary Adabavazeh , Francesco Baino","doi":"10.1016/j.bprint.2025.e00419","DOIUrl":null,"url":null,"abstract":"<div><div>3D bioprinting is an innovative approach that overcomes the limitations of traditional methods for creating cell-laden biomaterials and constructs. It allows for the fabrication of complex and biologically active tissue structures. This review aims to provide a comprehensive evaluation of polyvinyl alcohol (PVA)-based bioinks within a 3D bioprinting framework. PVA-based bioinks exhibit remarkable properties, such as biocompatibility, biodegradability, and the ability to enhance cell growth and differentiation. These properties make them appropriate for many tissue engineering applications. The study evaluates the physicochemical and biological properties of PVA bioinks, including how they combine with other materials such as gelatin, chitin, chitosan, alginate, agarose, cellulose, κ-carrageenan, methacrylate, nanoparticles, mineral additives, carbon nanotubes, graphene oxide, and extracellular matrix components. Furthermore, this review evaluates the benefits of market availability and enhanced printing resolution, in addition to the challenges posed by complexity, dependency on support baths, and the risk of contamination. The objective of this review is to draw attention to the capabilities of PVA-based bioinks and provide guidelines for future research to improve the effectiveness of these materials in tissue engineering and regenerative medicine.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"49 ","pages":"Article e00419"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PVA-based bioinks for 3D bioprinting: A comprehensive review of their applications in tissue engineering\",\"authors\":\"Narges Johari , Zary Adabavazeh , Francesco Baino\",\"doi\":\"10.1016/j.bprint.2025.e00419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>3D bioprinting is an innovative approach that overcomes the limitations of traditional methods for creating cell-laden biomaterials and constructs. It allows for the fabrication of complex and biologically active tissue structures. This review aims to provide a comprehensive evaluation of polyvinyl alcohol (PVA)-based bioinks within a 3D bioprinting framework. PVA-based bioinks exhibit remarkable properties, such as biocompatibility, biodegradability, and the ability to enhance cell growth and differentiation. These properties make them appropriate for many tissue engineering applications. The study evaluates the physicochemical and biological properties of PVA bioinks, including how they combine with other materials such as gelatin, chitin, chitosan, alginate, agarose, cellulose, κ-carrageenan, methacrylate, nanoparticles, mineral additives, carbon nanotubes, graphene oxide, and extracellular matrix components. Furthermore, this review evaluates the benefits of market availability and enhanced printing resolution, in addition to the challenges posed by complexity, dependency on support baths, and the risk of contamination. The objective of this review is to draw attention to the capabilities of PVA-based bioinks and provide guidelines for future research to improve the effectiveness of these materials in tissue engineering and regenerative medicine.</div></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":\"49 \",\"pages\":\"Article e00419\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886625000351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886625000351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
PVA-based bioinks for 3D bioprinting: A comprehensive review of their applications in tissue engineering
3D bioprinting is an innovative approach that overcomes the limitations of traditional methods for creating cell-laden biomaterials and constructs. It allows for the fabrication of complex and biologically active tissue structures. This review aims to provide a comprehensive evaluation of polyvinyl alcohol (PVA)-based bioinks within a 3D bioprinting framework. PVA-based bioinks exhibit remarkable properties, such as biocompatibility, biodegradability, and the ability to enhance cell growth and differentiation. These properties make them appropriate for many tissue engineering applications. The study evaluates the physicochemical and biological properties of PVA bioinks, including how they combine with other materials such as gelatin, chitin, chitosan, alginate, agarose, cellulose, κ-carrageenan, methacrylate, nanoparticles, mineral additives, carbon nanotubes, graphene oxide, and extracellular matrix components. Furthermore, this review evaluates the benefits of market availability and enhanced printing resolution, in addition to the challenges posed by complexity, dependency on support baths, and the risk of contamination. The objective of this review is to draw attention to the capabilities of PVA-based bioinks and provide guidelines for future research to improve the effectiveness of these materials in tissue engineering and regenerative medicine.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.