小框架消息传递

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Xinliang Liu , Bingxin Zhou , Chutian Zhang , Yu Guang Wang
{"title":"小框架消息传递","authors":"Xinliang Liu ,&nbsp;Bingxin Zhou ,&nbsp;Chutian Zhang ,&nbsp;Yu Guang Wang","doi":"10.1016/j.acha.2025.101773","DOIUrl":null,"url":null,"abstract":"<div><div>Graph neural networks have achieved champions in wide applications. Neural message passing is a typical key module for feature propagation by aggregating neighboring features. In this work, we propose a new message passing based on multiscale framelet transforms, called Framelet Message Passing. Different from traditional spatial methods, it integrates framelet representation of neighbor nodes from multiple hops away in node message update. We also propose a continuous message passing using neural ODE solvers. Both discrete and continuous cases can provably mitigate oversmoothing and achieve superior performance. Numerical experiments on real graph datasets show that the continuous version of the framelet message passing significantly outperforms existing methods when learning heterogeneous graphs and achieves state-of-the-art performance on classic node classification tasks with low computational costs.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"78 ","pages":"Article 101773"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Framelet message passing\",\"authors\":\"Xinliang Liu ,&nbsp;Bingxin Zhou ,&nbsp;Chutian Zhang ,&nbsp;Yu Guang Wang\",\"doi\":\"10.1016/j.acha.2025.101773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graph neural networks have achieved champions in wide applications. Neural message passing is a typical key module for feature propagation by aggregating neighboring features. In this work, we propose a new message passing based on multiscale framelet transforms, called Framelet Message Passing. Different from traditional spatial methods, it integrates framelet representation of neighbor nodes from multiple hops away in node message update. We also propose a continuous message passing using neural ODE solvers. Both discrete and continuous cases can provably mitigate oversmoothing and achieve superior performance. Numerical experiments on real graph datasets show that the continuous version of the framelet message passing significantly outperforms existing methods when learning heterogeneous graphs and achieves state-of-the-art performance on classic node classification tasks with low computational costs.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"78 \",\"pages\":\"Article 101773\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520325000272\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520325000272","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络已经取得了广泛的应用。神经信息传递是特征传播的典型关键模块,它通过对相邻特征的聚合实现特征传播。在这项工作中,我们提出了一种新的基于多尺度框架变换的消息传递,称为框架消息传递。与传统的空间方法不同,该方法在节点消息更新中集成了多跳相邻节点的框架表示。我们还提出了一个使用神经ODE求解器的连续消息传递。离散和连续两种情况都能有效地缓解过平滑,并获得较好的性能。在实际图数据集上的数值实验表明,连续版本的框架消息传递在学习异构图时明显优于现有的方法,并且在经典节点分类任务中具有较低的计算成本,达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Framelet message passing
Graph neural networks have achieved champions in wide applications. Neural message passing is a typical key module for feature propagation by aggregating neighboring features. In this work, we propose a new message passing based on multiscale framelet transforms, called Framelet Message Passing. Different from traditional spatial methods, it integrates framelet representation of neighbor nodes from multiple hops away in node message update. We also propose a continuous message passing using neural ODE solvers. Both discrete and continuous cases can provably mitigate oversmoothing and achieve superior performance. Numerical experiments on real graph datasets show that the continuous version of the framelet message passing significantly outperforms existing methods when learning heterogeneous graphs and achieves state-of-the-art performance on classic node classification tasks with low computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信