Siya Wang , Xiaoshan Lin , Y.X. Zhang , Yi Min Xie
{"title":"从单态元素设计拓扑互锁结构的一个广义框架","authors":"Siya Wang , Xiaoshan Lin , Y.X. Zhang , Yi Min Xie","doi":"10.1016/j.engstruct.2025.120607","DOIUrl":null,"url":null,"abstract":"<div><div>Topological interlocking (TI) structures, known for their superior energy dissipation, damage tolerance, and adaptability, are gaining increasing attention as innovative solutions to advanced structural designs. In this study, a general framework is developed for designing TI elements with curved contact surfaces, enabling the creation of monomorphic elements through a matched concavo-convex interface. The element shapes are controlled by parameters such as polygon type, polygon length, curve function, and element thickness. This approach can be applied to designing TI elements for both planar and non-planar structures. Validation is achieved through the design of 24 planar and 12 non-planar TI elements, along with two 3D-printed prototypes. Furthermore, the impact performance of typical TI plates is compared to that of a monolithic structure to demonstrate the effectiveness of the generalised interlocking mechanism.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"338 ","pages":"Article 120607"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalised framework for designing topological interlocking structures from monomorphic elements\",\"authors\":\"Siya Wang , Xiaoshan Lin , Y.X. Zhang , Yi Min Xie\",\"doi\":\"10.1016/j.engstruct.2025.120607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Topological interlocking (TI) structures, known for their superior energy dissipation, damage tolerance, and adaptability, are gaining increasing attention as innovative solutions to advanced structural designs. In this study, a general framework is developed for designing TI elements with curved contact surfaces, enabling the creation of monomorphic elements through a matched concavo-convex interface. The element shapes are controlled by parameters such as polygon type, polygon length, curve function, and element thickness. This approach can be applied to designing TI elements for both planar and non-planar structures. Validation is achieved through the design of 24 planar and 12 non-planar TI elements, along with two 3D-printed prototypes. Furthermore, the impact performance of typical TI plates is compared to that of a monolithic structure to demonstrate the effectiveness of the generalised interlocking mechanism.</div></div>\",\"PeriodicalId\":11763,\"journal\":{\"name\":\"Engineering Structures\",\"volume\":\"338 \",\"pages\":\"Article 120607\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141029625009988\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029625009988","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A generalised framework for designing topological interlocking structures from monomorphic elements
Topological interlocking (TI) structures, known for their superior energy dissipation, damage tolerance, and adaptability, are gaining increasing attention as innovative solutions to advanced structural designs. In this study, a general framework is developed for designing TI elements with curved contact surfaces, enabling the creation of monomorphic elements through a matched concavo-convex interface. The element shapes are controlled by parameters such as polygon type, polygon length, curve function, and element thickness. This approach can be applied to designing TI elements for both planar and non-planar structures. Validation is achieved through the design of 24 planar and 12 non-planar TI elements, along with two 3D-printed prototypes. Furthermore, the impact performance of typical TI plates is compared to that of a monolithic structure to demonstrate the effectiveness of the generalised interlocking mechanism.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.