{"title":"利用新鲜棕榈果串和医疗废弃塑料瓶共热解气体发电,实现可持续能源应用","authors":"Songkran Wiriyasart , Nathawat Unsomsri , Pichai Asadamongkon , Sittinun Tawkaew , Surachai Narrat Jansri , Sommas Kaewluan","doi":"10.1016/j.cscee.2025.101240","DOIUrl":null,"url":null,"abstract":"<div><div>Co-pyrolysis gas produced from the co-pyrolysis of fresh palm fruit bunches and medical waste plastic bottles using a batch pyrolyzer integrated with a downdraft gasifier was evaluated for sustainable electricity generation. Increasing the plastic fraction enhanced the gas heating value (41.43–55.53 MJ/Nm<sup>3</sup>) but decreased gas yield from 22.7 % to 9.0 %. Electrical efficiency was calculated based on the ratio of output power to syngas energy content, achieving 8.96–9.01 %. Engine tests showed a reduction in CO emissions (30,149–17,419 ppm) and comparable NO<sub>x</sub> levels to gasoline combustion. These results demonstrate the co-pyrolysis gas's potential as a renewable fuel for decentralized power.</div></div>","PeriodicalId":34388,"journal":{"name":"Case Studies in Chemical and Environmental Engineering","volume":"12 ","pages":"Article 101240"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electricity generation from co-pyrolysis gas of fresh palm fruit bunches and medical waste plastic bottles for sustainable energy applications\",\"authors\":\"Songkran Wiriyasart , Nathawat Unsomsri , Pichai Asadamongkon , Sittinun Tawkaew , Surachai Narrat Jansri , Sommas Kaewluan\",\"doi\":\"10.1016/j.cscee.2025.101240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Co-pyrolysis gas produced from the co-pyrolysis of fresh palm fruit bunches and medical waste plastic bottles using a batch pyrolyzer integrated with a downdraft gasifier was evaluated for sustainable electricity generation. Increasing the plastic fraction enhanced the gas heating value (41.43–55.53 MJ/Nm<sup>3</sup>) but decreased gas yield from 22.7 % to 9.0 %. Electrical efficiency was calculated based on the ratio of output power to syngas energy content, achieving 8.96–9.01 %. Engine tests showed a reduction in CO emissions (30,149–17,419 ppm) and comparable NO<sub>x</sub> levels to gasoline combustion. These results demonstrate the co-pyrolysis gas's potential as a renewable fuel for decentralized power.</div></div>\",\"PeriodicalId\":34388,\"journal\":{\"name\":\"Case Studies in Chemical and Environmental Engineering\",\"volume\":\"12 \",\"pages\":\"Article 101240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Chemical and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666016425001471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Chemical and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666016425001471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Electricity generation from co-pyrolysis gas of fresh palm fruit bunches and medical waste plastic bottles for sustainable energy applications
Co-pyrolysis gas produced from the co-pyrolysis of fresh palm fruit bunches and medical waste plastic bottles using a batch pyrolyzer integrated with a downdraft gasifier was evaluated for sustainable electricity generation. Increasing the plastic fraction enhanced the gas heating value (41.43–55.53 MJ/Nm3) but decreased gas yield from 22.7 % to 9.0 %. Electrical efficiency was calculated based on the ratio of output power to syngas energy content, achieving 8.96–9.01 %. Engine tests showed a reduction in CO emissions (30,149–17,419 ppm) and comparable NOx levels to gasoline combustion. These results demonstrate the co-pyrolysis gas's potential as a renewable fuel for decentralized power.