Vlad Cucuiet , Dana Maniu , Simion Astilean , Marc Lamy de la Chapelle , Monica Focsan
{"title":"石墨烯介导的表面增强拉曼光谱用于DNA检测和杂交:突破和挑战","authors":"Vlad Cucuiet , Dana Maniu , Simion Astilean , Marc Lamy de la Chapelle , Monica Focsan","doi":"10.1016/j.bios.2025.117610","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the growing demand for advanced DNA research, the need for refined scientific methodologies has become increasingly evident. This review provides a comprehensive synthesis of recent advancements in the application of graphene-mediated Surface Enhanced Raman Spectroscopy (G-SERS) for DNA detection and hybridization, highlighting its significant potential in biomedical fields particularly gene detection and emphasizing its crucial role in advancing genetic research. More importantly, it emphasizes the pivotal role of Au and Ag nanoparticles, with varying shapes and sizes, in enhancing signal intensity and improving analytical performance, highlighting the significant contributions of G-SERS in enhancing both the sensitivity and selectivity of DNA analysis. Furthermore, our review explores innovative hybrid approaches that integrate SERS with Quartz Crystal Microbalance (QCM) and Atomic Force Microscopy (AFM), marking a transformative shift in analytical capabilities. Overall, this review offers valuable insights into the evolving landscape of DNA analysis technologies, paving the way for future advancements in genetic research.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"286 ","pages":"Article 117610"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphene-mediated surface enhanced Raman spectroscopy for DNA Detection&hybridization: Breakthroughs and challenges\",\"authors\":\"Vlad Cucuiet , Dana Maniu , Simion Astilean , Marc Lamy de la Chapelle , Monica Focsan\",\"doi\":\"10.1016/j.bios.2025.117610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In response to the growing demand for advanced DNA research, the need for refined scientific methodologies has become increasingly evident. This review provides a comprehensive synthesis of recent advancements in the application of graphene-mediated Surface Enhanced Raman Spectroscopy (G-SERS) for DNA detection and hybridization, highlighting its significant potential in biomedical fields particularly gene detection and emphasizing its crucial role in advancing genetic research. More importantly, it emphasizes the pivotal role of Au and Ag nanoparticles, with varying shapes and sizes, in enhancing signal intensity and improving analytical performance, highlighting the significant contributions of G-SERS in enhancing both the sensitivity and selectivity of DNA analysis. Furthermore, our review explores innovative hybrid approaches that integrate SERS with Quartz Crystal Microbalance (QCM) and Atomic Force Microscopy (AFM), marking a transformative shift in analytical capabilities. Overall, this review offers valuable insights into the evolving landscape of DNA analysis technologies, paving the way for future advancements in genetic research.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"286 \",\"pages\":\"Article 117610\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566325004841\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325004841","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Graphene-mediated surface enhanced Raman spectroscopy for DNA Detection&hybridization: Breakthroughs and challenges
In response to the growing demand for advanced DNA research, the need for refined scientific methodologies has become increasingly evident. This review provides a comprehensive synthesis of recent advancements in the application of graphene-mediated Surface Enhanced Raman Spectroscopy (G-SERS) for DNA detection and hybridization, highlighting its significant potential in biomedical fields particularly gene detection and emphasizing its crucial role in advancing genetic research. More importantly, it emphasizes the pivotal role of Au and Ag nanoparticles, with varying shapes and sizes, in enhancing signal intensity and improving analytical performance, highlighting the significant contributions of G-SERS in enhancing both the sensitivity and selectivity of DNA analysis. Furthermore, our review explores innovative hybrid approaches that integrate SERS with Quartz Crystal Microbalance (QCM) and Atomic Force Microscopy (AFM), marking a transformative shift in analytical capabilities. Overall, this review offers valuable insights into the evolving landscape of DNA analysis technologies, paving the way for future advancements in genetic research.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.