一类具有非局部加权指数边界条件的非线性反应扩散系统的爆破

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Hongwei Liu , Lingling Zhang , Tao Liu
{"title":"一类具有非局部加权指数边界条件的非线性反应扩散系统的爆破","authors":"Hongwei Liu ,&nbsp;Lingling Zhang ,&nbsp;Tao Liu","doi":"10.1016/j.nonrwa.2025.104413","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study a class of reaction–diffusion system with nonlinear terms, variable coefficients, and nonlocal exponential boundary conditions. We demonstrate the existence of solutions using the subsolution and supersolution method, comparison principle, and representation theorem. Uniqueness of solutions is established via the contraction mapping principle, aided by the Green’s function. Furthermore, we construct supersolutions to prove the existence of global solutions under various conditions. By employing the auxiliary function method, we obtain upper and lower bounds for blow-up solutions under different parametric settings. Finally, examples are provided to verify our theoretical findings.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104413"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up of a nonlinear reaction–diffusion system with nonlocal weighted exponential boundary condition\",\"authors\":\"Hongwei Liu ,&nbsp;Lingling Zhang ,&nbsp;Tao Liu\",\"doi\":\"10.1016/j.nonrwa.2025.104413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study a class of reaction–diffusion system with nonlinear terms, variable coefficients, and nonlocal exponential boundary conditions. We demonstrate the existence of solutions using the subsolution and supersolution method, comparison principle, and representation theorem. Uniqueness of solutions is established via the contraction mapping principle, aided by the Green’s function. Furthermore, we construct supersolutions to prove the existence of global solutions under various conditions. By employing the auxiliary function method, we obtain upper and lower bounds for blow-up solutions under different parametric settings. Finally, examples are provided to verify our theoretical findings.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"87 \",\"pages\":\"Article 104413\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825000999\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000999","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有非线性项、变系数和非局部指数边界条件的反应扩散系统。利用子解和上解方法、比较原理和表示定理证明了解的存在性。在格林函数的辅助下,通过收缩映射原理建立了解的唯一性。进一步,我们构造了超解,证明了在各种条件下全局解的存在性。利用辅助函数法,得到了不同参数设置下爆破解的上界和下界。最后,通过实例验证了我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up of a nonlinear reaction–diffusion system with nonlocal weighted exponential boundary condition
In this paper, we study a class of reaction–diffusion system with nonlinear terms, variable coefficients, and nonlocal exponential boundary conditions. We demonstrate the existence of solutions using the subsolution and supersolution method, comparison principle, and representation theorem. Uniqueness of solutions is established via the contraction mapping principle, aided by the Green’s function. Furthermore, we construct supersolutions to prove the existence of global solutions under various conditions. By employing the auxiliary function method, we obtain upper and lower bounds for blow-up solutions under different parametric settings. Finally, examples are provided to verify our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信