凝胶衍生的NiO-MoS2用于可扩展制造双功能丝网印刷电极,用于整体水分解

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Zhoveta Yhobu , Muralikrishna Sreeramareddygari , Chatuporn Phanthong , Srinivasa Budagumpi , Doddahalli H. Nagaraju , Wachira Chaiworn , Mithran Somasundrum , Patsamon Rijiravanich , Surawut Chuangchote , Werasak Surareungchai
{"title":"凝胶衍生的NiO-MoS2用于可扩展制造双功能丝网印刷电极,用于整体水分解","authors":"Zhoveta Yhobu ,&nbsp;Muralikrishna Sreeramareddygari ,&nbsp;Chatuporn Phanthong ,&nbsp;Srinivasa Budagumpi ,&nbsp;Doddahalli H. Nagaraju ,&nbsp;Wachira Chaiworn ,&nbsp;Mithran Somasundrum ,&nbsp;Patsamon Rijiravanich ,&nbsp;Surawut Chuangchote ,&nbsp;Werasak Surareungchai","doi":"10.1016/j.ijhydene.2025.05.296","DOIUrl":null,"url":null,"abstract":"<div><div>The fabrication of flexible, free-standing electrodes is crucial for advancing renewable energy technologies, particularly in energy conversion and storage. Traditional electrode fabrication methods often involve complex procedures, high material wastage, and limited scalability, whereas screen printing offers a cost-effective, reproducible, and scalable approach for producing high-performance electrodes with uniform coatings. This study introduces a versatile screen-printing strategy for fabricating flexible carbon cloth (CC) electrodes using NiO–MoS<sub>2</sub> ink derived from a solvothermal method. The resulting screen-printed CC electrodes function as efficient bifunctional catalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting in alkaline media. The NiO–MoS<sub>2</sub> screen-printed CC electrode exhibits excellent electrocatalytic performance, achieving an OER overpotential (<em>η</em><sub>10</sub>) of 382 mV <em>vs</em> RHE with a Tafel slope of 75 mV/dec and HER overpotential (<em>η</em><sub>10</sub>) of −159 mV <em>vs</em> RHE and Tafel slope of 116 mV/dec. To further demonstrate its bifunctionality, the NiO–MoS<sub>2</sub> screen-printed CC electrode was assembled into a water-splitting electrolyzer, requiring a cell voltage of 1.79 V to reach a current density of 10 mA/cm<sup>2</sup> and exhibiting outstanding operational durability. The robustness and structural integrity of the developed electrode is confirmed by the post-stability analysis, highlighting the potential of the methodology reported in this work for the scalable fabrication of high-performance electrodes for water splitting applications.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"139 ","pages":"Pages 247-256"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gel-derived NiO–MoS2 for the scalable fabrication of bifunctional screen-printed electrodes for overall water splitting\",\"authors\":\"Zhoveta Yhobu ,&nbsp;Muralikrishna Sreeramareddygari ,&nbsp;Chatuporn Phanthong ,&nbsp;Srinivasa Budagumpi ,&nbsp;Doddahalli H. Nagaraju ,&nbsp;Wachira Chaiworn ,&nbsp;Mithran Somasundrum ,&nbsp;Patsamon Rijiravanich ,&nbsp;Surawut Chuangchote ,&nbsp;Werasak Surareungchai\",\"doi\":\"10.1016/j.ijhydene.2025.05.296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The fabrication of flexible, free-standing electrodes is crucial for advancing renewable energy technologies, particularly in energy conversion and storage. Traditional electrode fabrication methods often involve complex procedures, high material wastage, and limited scalability, whereas screen printing offers a cost-effective, reproducible, and scalable approach for producing high-performance electrodes with uniform coatings. This study introduces a versatile screen-printing strategy for fabricating flexible carbon cloth (CC) electrodes using NiO–MoS<sub>2</sub> ink derived from a solvothermal method. The resulting screen-printed CC electrodes function as efficient bifunctional catalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting in alkaline media. The NiO–MoS<sub>2</sub> screen-printed CC electrode exhibits excellent electrocatalytic performance, achieving an OER overpotential (<em>η</em><sub>10</sub>) of 382 mV <em>vs</em> RHE with a Tafel slope of 75 mV/dec and HER overpotential (<em>η</em><sub>10</sub>) of −159 mV <em>vs</em> RHE and Tafel slope of 116 mV/dec. To further demonstrate its bifunctionality, the NiO–MoS<sub>2</sub> screen-printed CC electrode was assembled into a water-splitting electrolyzer, requiring a cell voltage of 1.79 V to reach a current density of 10 mA/cm<sup>2</sup> and exhibiting outstanding operational durability. The robustness and structural integrity of the developed electrode is confirmed by the post-stability analysis, highlighting the potential of the methodology reported in this work for the scalable fabrication of high-performance electrodes for water splitting applications.</div></div>\",\"PeriodicalId\":337,\"journal\":{\"name\":\"International Journal of Hydrogen Energy\",\"volume\":\"139 \",\"pages\":\"Pages 247-256\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hydrogen Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360319925025996\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925025996","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

柔性、独立电极的制造对于推进可再生能源技术至关重要,特别是在能量转换和存储方面。传统的电极制造方法通常涉及复杂的程序,高材料浪费和有限的可扩展性,而丝网印刷为生产具有均匀涂层的高性能电极提供了成本效益,可重复和可扩展的方法。本研究介绍了一种多功能丝网印刷策略,用于使用溶剂热法衍生的NiO-MoS2墨水制造柔性碳布(CC)电极。所得的丝网印刷CC电极在碱性介质中作为析氢反应(HER)、析氧反应(OER)和整体水分解的高效双功能催化剂。ni - mos2网印CC电极表现出优异的电催化性能,OER过电位(η10)为382 mV/ RHE, Tafel斜率为75 mV/dec; HER过电位(η10)为- 159 mV/ RHE, Tafel斜率为116 mV/dec。为了进一步证明其双重功能,将NiO-MoS2丝网印刷的CC电极组装到一个水分解电解槽中,需要1.79 V的电池电压才能达到10 mA/cm2的电流密度,并表现出出色的运行耐久性。后稳定性分析证实了所开发电极的稳健性和结构完整性,突出了本研究中报告的方法在可扩展制造用于水分解应用的高性能电极方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gel-derived NiO–MoS2 for the scalable fabrication of bifunctional screen-printed electrodes for overall water splitting
The fabrication of flexible, free-standing electrodes is crucial for advancing renewable energy technologies, particularly in energy conversion and storage. Traditional electrode fabrication methods often involve complex procedures, high material wastage, and limited scalability, whereas screen printing offers a cost-effective, reproducible, and scalable approach for producing high-performance electrodes with uniform coatings. This study introduces a versatile screen-printing strategy for fabricating flexible carbon cloth (CC) electrodes using NiO–MoS2 ink derived from a solvothermal method. The resulting screen-printed CC electrodes function as efficient bifunctional catalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting in alkaline media. The NiO–MoS2 screen-printed CC electrode exhibits excellent electrocatalytic performance, achieving an OER overpotential (η10) of 382 mV vs RHE with a Tafel slope of 75 mV/dec and HER overpotential (η10) of −159 mV vs RHE and Tafel slope of 116 mV/dec. To further demonstrate its bifunctionality, the NiO–MoS2 screen-printed CC electrode was assembled into a water-splitting electrolyzer, requiring a cell voltage of 1.79 V to reach a current density of 10 mA/cm2 and exhibiting outstanding operational durability. The robustness and structural integrity of the developed electrode is confirmed by the post-stability analysis, highlighting the potential of the methodology reported in this work for the scalable fabrication of high-performance electrodes for water splitting applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信