Smruti Ranjan Dash , Hyungmin Choi , Jae Keun Song , Dayoung Ko , Changsoo Lee , Jeonghwan Kim
{"title":"厌氧序批式反应器中石墨阴极表面工程对甲烷生产的电化学改进","authors":"Smruti Ranjan Dash , Hyungmin Choi , Jae Keun Song , Dayoung Ko , Changsoo Lee , Jeonghwan Kim","doi":"10.1016/j.jenvman.2025.125826","DOIUrl":null,"url":null,"abstract":"<div><div>Five anaerobic sequential batch reactors (SBR), SBR 1−SBR 5 run in parallel were examined for biogas output trends under varying hydraulic retention times (HRT). SBR 1 was run without biomass for 1 month to study electrode stability and the effect of applied potential on sodium dodecyl sulfate (SDS) degradation. Polyaniline (PANI/Graphite) modification in reactors SBR 4 and iron-coated PANI (Fe-PANI/Graphite) in SBR 5 increased biogas production by almost 2.5 times compared to SBR 2 without electrodes. SBR 3 equipped with unmodified graphite rods was used as a control for cathode modifications. By decreasing HRT, cumulative methane production increased to 280 and 320 mL at 72 h and 350 and 500 mL at 48 h. Compared to SBR 2, an electric field increased daily biogas production. Methane composition in SBR 5 increased from 44% at 96-h to 71% at 48-h HRT after 30 days. SBR 4 recovered within 7 days after HRT modifications reduced methane output. The methane yield increased significantly with electric current in SBR 3 (2.6 times), SBR 4 (5.4 times), and SBR 5 (7.4 times). The effluent total organic carbon was stabilized at 15 mg/L for SBR 2 and SBR 3 and improved to below 5 mg/L for SBR 4 and SBR 5 during reactor operation. SBR 5, equipped with an Fe-PANI/Graphite cathode showing the lowest charge transfer resistance, developed distinct microbial community structures in both anodic and cathodic biofilms, compared to the other electrically assisted SBRs.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"387 ","pages":"Article 125826"},"PeriodicalIF":8.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical improvement of methane production via surface engineering of graphitic cathodes in anaerobic sequential batch reactors\",\"authors\":\"Smruti Ranjan Dash , Hyungmin Choi , Jae Keun Song , Dayoung Ko , Changsoo Lee , Jeonghwan Kim\",\"doi\":\"10.1016/j.jenvman.2025.125826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Five anaerobic sequential batch reactors (SBR), SBR 1−SBR 5 run in parallel were examined for biogas output trends under varying hydraulic retention times (HRT). SBR 1 was run without biomass for 1 month to study electrode stability and the effect of applied potential on sodium dodecyl sulfate (SDS) degradation. Polyaniline (PANI/Graphite) modification in reactors SBR 4 and iron-coated PANI (Fe-PANI/Graphite) in SBR 5 increased biogas production by almost 2.5 times compared to SBR 2 without electrodes. SBR 3 equipped with unmodified graphite rods was used as a control for cathode modifications. By decreasing HRT, cumulative methane production increased to 280 and 320 mL at 72 h and 350 and 500 mL at 48 h. Compared to SBR 2, an electric field increased daily biogas production. Methane composition in SBR 5 increased from 44% at 96-h to 71% at 48-h HRT after 30 days. SBR 4 recovered within 7 days after HRT modifications reduced methane output. The methane yield increased significantly with electric current in SBR 3 (2.6 times), SBR 4 (5.4 times), and SBR 5 (7.4 times). The effluent total organic carbon was stabilized at 15 mg/L for SBR 2 and SBR 3 and improved to below 5 mg/L for SBR 4 and SBR 5 during reactor operation. SBR 5, equipped with an Fe-PANI/Graphite cathode showing the lowest charge transfer resistance, developed distinct microbial community structures in both anodic and cathodic biofilms, compared to the other electrically assisted SBRs.</div></div>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":\"387 \",\"pages\":\"Article 125826\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030147972501802X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030147972501802X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Electrochemical improvement of methane production via surface engineering of graphitic cathodes in anaerobic sequential batch reactors
Five anaerobic sequential batch reactors (SBR), SBR 1−SBR 5 run in parallel were examined for biogas output trends under varying hydraulic retention times (HRT). SBR 1 was run without biomass for 1 month to study electrode stability and the effect of applied potential on sodium dodecyl sulfate (SDS) degradation. Polyaniline (PANI/Graphite) modification in reactors SBR 4 and iron-coated PANI (Fe-PANI/Graphite) in SBR 5 increased biogas production by almost 2.5 times compared to SBR 2 without electrodes. SBR 3 equipped with unmodified graphite rods was used as a control for cathode modifications. By decreasing HRT, cumulative methane production increased to 280 and 320 mL at 72 h and 350 and 500 mL at 48 h. Compared to SBR 2, an electric field increased daily biogas production. Methane composition in SBR 5 increased from 44% at 96-h to 71% at 48-h HRT after 30 days. SBR 4 recovered within 7 days after HRT modifications reduced methane output. The methane yield increased significantly with electric current in SBR 3 (2.6 times), SBR 4 (5.4 times), and SBR 5 (7.4 times). The effluent total organic carbon was stabilized at 15 mg/L for SBR 2 and SBR 3 and improved to below 5 mg/L for SBR 4 and SBR 5 during reactor operation. SBR 5, equipped with an Fe-PANI/Graphite cathode showing the lowest charge transfer resistance, developed distinct microbial community structures in both anodic and cathodic biofilms, compared to the other electrically assisted SBRs.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.