大型锂离子电池模组热失控特性及液氮抑制效应研究

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Xianyu Yu , Xiaoqiang Zhang , Shuo Li , Xulong Zheng , Jinxiong Chen , Bo Yin , Zhi Wang
{"title":"大型锂离子电池模组热失控特性及液氮抑制效应研究","authors":"Xianyu Yu ,&nbsp;Xiaoqiang Zhang ,&nbsp;Shuo Li ,&nbsp;Xulong Zheng ,&nbsp;Jinxiong Chen ,&nbsp;Bo Yin ,&nbsp;Zhi Wang","doi":"10.1016/j.ijheatmasstransfer.2025.127281","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal runaway (TR) in lithium-ion battery (LIB) modules poses significant safety risks to energy storage systems, primarily due to the potential for thermal runaway propagation (TRP) between adjacent modules. This study investigates the influence of liquid nitrogen (LN) intervention on module-to-module heat transfer during TR events in a large-format prismatic LIB module. Experimental results demonstrate that, in the absence of LN, TR in the central module leads to significant heat transfer to adjacent modules, especially in the vertical direction, driven by buoyancy-induced flame ejection and hot gas flow. However, after LN injection, the heat transfer to neighboring modules is effectively suppressed, with the temperature of adjacent modules remaining near or below ambient levels, preventing further TRP. Comparative analysis of different LN injection masses (11 kg, 13 kg, and 18 kg) reveals that while larger LN quantities enhance cooling rates, excessive injection yields diminishing returns in heat absorption efficiency. A 13 kg injection is identified as the optimal balance, providing sufficient cooling to interrupt inter-module heat transfer and confine the thermal hazard within the initial failure module. These findings provide practical insights into the design of cryogenic suppression systems and structural safety measures aimed at limiting module-to-module thermal propagation in large-scale energy storage applications.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"250 ","pages":"Article 127281"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on thermal runaway characteristics and liquid nitrogen inhibition effect of large-format lithium-ion battery modules\",\"authors\":\"Xianyu Yu ,&nbsp;Xiaoqiang Zhang ,&nbsp;Shuo Li ,&nbsp;Xulong Zheng ,&nbsp;Jinxiong Chen ,&nbsp;Bo Yin ,&nbsp;Zhi Wang\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.127281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal runaway (TR) in lithium-ion battery (LIB) modules poses significant safety risks to energy storage systems, primarily due to the potential for thermal runaway propagation (TRP) between adjacent modules. This study investigates the influence of liquid nitrogen (LN) intervention on module-to-module heat transfer during TR events in a large-format prismatic LIB module. Experimental results demonstrate that, in the absence of LN, TR in the central module leads to significant heat transfer to adjacent modules, especially in the vertical direction, driven by buoyancy-induced flame ejection and hot gas flow. However, after LN injection, the heat transfer to neighboring modules is effectively suppressed, with the temperature of adjacent modules remaining near or below ambient levels, preventing further TRP. Comparative analysis of different LN injection masses (11 kg, 13 kg, and 18 kg) reveals that while larger LN quantities enhance cooling rates, excessive injection yields diminishing returns in heat absorption efficiency. A 13 kg injection is identified as the optimal balance, providing sufficient cooling to interrupt inter-module heat transfer and confine the thermal hazard within the initial failure module. These findings provide practical insights into the design of cryogenic suppression systems and structural safety measures aimed at limiting module-to-module thermal propagation in large-scale energy storage applications.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"250 \",\"pages\":\"Article 127281\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025006209\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025006209","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池(LIB)模块中的热失控(TR)给储能系统带来了重大的安全风险,主要是由于相邻模块之间存在热失控传播(TRP)的可能性。本文研究了在大尺寸柱形LIB模块中,液氮(LN)干预对TR事件中模块间传热的影响。实验结果表明,在没有LN的情况下,中心模块的TR在浮力诱导火焰喷射和热气流的驱动下,对相邻模块进行了显著的换热,特别是在垂直方向上。然而,在注入LN后,向相邻模块的传热被有效抑制,相邻模块的温度保持在接近或低于环境水平,从而防止了进一步的TRP。不同LN注入质量(11 kg、13 kg和18 kg)的对比分析表明,虽然较大的LN注入量可以提高冷却速度,但过多的LN注入会降低吸热效率。13kg的注入量被确定为最佳平衡,提供足够的冷却来中断模块间的传热,并将热危险限制在初始故障模块内。这些发现为设计低温抑制系统和结构安全措施提供了实用的见解,旨在限制大规模储能应用中模块到模块的热传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on thermal runaway characteristics and liquid nitrogen inhibition effect of large-format lithium-ion battery modules
Thermal runaway (TR) in lithium-ion battery (LIB) modules poses significant safety risks to energy storage systems, primarily due to the potential for thermal runaway propagation (TRP) between adjacent modules. This study investigates the influence of liquid nitrogen (LN) intervention on module-to-module heat transfer during TR events in a large-format prismatic LIB module. Experimental results demonstrate that, in the absence of LN, TR in the central module leads to significant heat transfer to adjacent modules, especially in the vertical direction, driven by buoyancy-induced flame ejection and hot gas flow. However, after LN injection, the heat transfer to neighboring modules is effectively suppressed, with the temperature of adjacent modules remaining near or below ambient levels, preventing further TRP. Comparative analysis of different LN injection masses (11 kg, 13 kg, and 18 kg) reveals that while larger LN quantities enhance cooling rates, excessive injection yields diminishing returns in heat absorption efficiency. A 13 kg injection is identified as the optimal balance, providing sufficient cooling to interrupt inter-module heat transfer and confine the thermal hazard within the initial failure module. These findings provide practical insights into the design of cryogenic suppression systems and structural safety measures aimed at limiting module-to-module thermal propagation in large-scale energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信