H2S气体净化与生物浸出一体化回收电弧炉粉尘锌

IF 4.8 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Päivi Kinnunen , Hanna Miettinen , Christian Frilund , Pekka Simell
{"title":"H2S气体净化与生物浸出一体化回收电弧炉粉尘锌","authors":"Päivi Kinnunen ,&nbsp;Hanna Miettinen ,&nbsp;Christian Frilund ,&nbsp;Pekka Simell","doi":"10.1016/j.hydromet.2025.106505","DOIUrl":null,"url":null,"abstract":"<div><div>Electric arc furnace (EAF) dust is a by-product of the stainless-steel industry that contains significant amounts of zinc and iron as well as lead and is classified as hazardous waste. Recovering metals from the EAF dust would increase the zinc supply from waste and decrease the amount of hazardous waste. Cleaning of industrial gases using EAF dust is a potential low-cost alternative to non-regenerable primary ZnO adsorbents. The challenge is to develop further treatment methods for sulfide materials to recover their metal values and manage sulfur, by comparing the leaching of EAF before and after sulfidation with H<sub>2</sub>S. This study shows the feasibility of integrating H<sub>2</sub>S removal by adsorption at elevated temperatures using EAF dust with zinc recovery from the sulfide material of EAF after sulfidation (S-EAF) using bioleaching. In this process, sulfur- and iron-oxidizing microorganisms oxidize the sulfide mineral and leach zinc into the solution. Hydrometallurgical EAF dust recycling technologies require significant quantities of acid. A part of the acid used for leaching can be produced from the sulfide material itself, significantly reducing the need for external sulfuric acid. Integrating gas cleaning with bioleaching enables the utilisation of both the metal and captured sulfur content. The integrated sulfur capture-bioleaching concept has potential for adaptation to other oxidized waste materials beyond EAF dust.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106505"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of H2S gas cleaning and bioleaching for zinc recovery from electric arc furnace dust\",\"authors\":\"Päivi Kinnunen ,&nbsp;Hanna Miettinen ,&nbsp;Christian Frilund ,&nbsp;Pekka Simell\",\"doi\":\"10.1016/j.hydromet.2025.106505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electric arc furnace (EAF) dust is a by-product of the stainless-steel industry that contains significant amounts of zinc and iron as well as lead and is classified as hazardous waste. Recovering metals from the EAF dust would increase the zinc supply from waste and decrease the amount of hazardous waste. Cleaning of industrial gases using EAF dust is a potential low-cost alternative to non-regenerable primary ZnO adsorbents. The challenge is to develop further treatment methods for sulfide materials to recover their metal values and manage sulfur, by comparing the leaching of EAF before and after sulfidation with H<sub>2</sub>S. This study shows the feasibility of integrating H<sub>2</sub>S removal by adsorption at elevated temperatures using EAF dust with zinc recovery from the sulfide material of EAF after sulfidation (S-EAF) using bioleaching. In this process, sulfur- and iron-oxidizing microorganisms oxidize the sulfide mineral and leach zinc into the solution. Hydrometallurgical EAF dust recycling technologies require significant quantities of acid. A part of the acid used for leaching can be produced from the sulfide material itself, significantly reducing the need for external sulfuric acid. Integrating gas cleaning with bioleaching enables the utilisation of both the metal and captured sulfur content. The integrated sulfur capture-bioleaching concept has potential for adaptation to other oxidized waste materials beyond EAF dust.</div></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"236 \",\"pages\":\"Article 106505\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X25000702\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000702","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

电弧炉(EAF)粉尘是不锈钢工业的副产品,含有大量的锌、铁和铅,被列为危险废物。从电炉炉灰中回收金属可以增加废物中锌的供应,减少有害废物的数量。利用电炉粉尘净化工业气体是一种潜在的低成本替代不可再生氧化锌吸附剂的方法。目前面临的挑战是,通过比较硫化氢硫化前后EAF的浸出情况,开发出进一步的硫化材料处理方法,以恢复其金属价值并管理硫。本研究证明了电炉炉灰高温吸附脱除H2S与电炉硫化后硫化物(S-EAF)生物浸出法回收锌相结合的可行性。在这个过程中,硫和铁氧化微生物氧化硫化物矿物并将锌浸出到溶液中。湿法冶金电炉粉尘回收技术需要大量的酸。部分用于浸出的酸可以由硫化物材料本身产生,大大减少了对外部硫酸的需求。将气体清洗与生物浸出相结合,可以同时利用金属和捕获的硫含量。综合硫捕获-生物浸出概念有可能适用于除电炉粉尘以外的其他氧化废物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of H2S gas cleaning and bioleaching for zinc recovery from electric arc furnace dust
Electric arc furnace (EAF) dust is a by-product of the stainless-steel industry that contains significant amounts of zinc and iron as well as lead and is classified as hazardous waste. Recovering metals from the EAF dust would increase the zinc supply from waste and decrease the amount of hazardous waste. Cleaning of industrial gases using EAF dust is a potential low-cost alternative to non-regenerable primary ZnO adsorbents. The challenge is to develop further treatment methods for sulfide materials to recover their metal values and manage sulfur, by comparing the leaching of EAF before and after sulfidation with H2S. This study shows the feasibility of integrating H2S removal by adsorption at elevated temperatures using EAF dust with zinc recovery from the sulfide material of EAF after sulfidation (S-EAF) using bioleaching. In this process, sulfur- and iron-oxidizing microorganisms oxidize the sulfide mineral and leach zinc into the solution. Hydrometallurgical EAF dust recycling technologies require significant quantities of acid. A part of the acid used for leaching can be produced from the sulfide material itself, significantly reducing the need for external sulfuric acid. Integrating gas cleaning with bioleaching enables the utilisation of both the metal and captured sulfur content. The integrated sulfur capture-bioleaching concept has potential for adaptation to other oxidized waste materials beyond EAF dust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrometallurgy
Hydrometallurgy 工程技术-冶金工程
CiteScore
9.50
自引率
6.40%
发文量
144
审稿时长
3.4 months
期刊介绍: Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties. Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信