基于卷帘门的可见光通信中叠加数据传输的实验演示

IF 2.4 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Masayuki Kinoshita;Ryuto Maeda;Koji Kamakura;Takaya Yamazato
{"title":"基于卷帘门的可见光通信中叠加数据传输的实验演示","authors":"Masayuki Kinoshita;Ryuto Maeda;Koji Kamakura;Takaya Yamazato","doi":"10.1109/JPHOT.2025.3568891","DOIUrl":null,"url":null,"abstract":"This study aims to provide adaptability to changes in the communication distance of rolling shutter based visible light communication (RS-VLC). A key issue in RS-VLC is the trade-off between the data rate and communication distance. To resolve this issue, we propose a superimposed data transmission method in which two sets of data, namely short- and long-range data, are superimposed and transmitted simultaneously. Short-range data are transmitted in long-bit sequences with a small number of iterations, whereas long-range data are transmitted in short-bit sequences with a large number of iterations. These two datasets can be separately decoded at the receiver by superimposing and transmitting them at different amplitudes. The proposed method can decode all the superimposed data at short ranges, thus suppressing data rate degradation. As the communication distance increases, the proposed method decodes only the available data, allowing for data reception over longer ranges, albeit at a lower data rate. We further extend the proposed method by adding a third set of data, namely mid-range data, for further flexibility in communication distance and data rate. The experimental results show that the proposed method achieves data reception over a longer distance (up to 150 cm) while suppressing throughput degradation at short-ranges, that is, it mitigates the trade-off between the data rate and communication distances compared to conventional <inline-formula><tex-math>$M$</tex-math></inline-formula>-ary pulse amplitude modulation systems.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 3","pages":"1-11"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10999103","citationCount":"0","resultStr":"{\"title\":\"Experimental Demonstration of Superimposed Data Transmission in Rolling Shutter Based Visible Light Communication\",\"authors\":\"Masayuki Kinoshita;Ryuto Maeda;Koji Kamakura;Takaya Yamazato\",\"doi\":\"10.1109/JPHOT.2025.3568891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to provide adaptability to changes in the communication distance of rolling shutter based visible light communication (RS-VLC). A key issue in RS-VLC is the trade-off between the data rate and communication distance. To resolve this issue, we propose a superimposed data transmission method in which two sets of data, namely short- and long-range data, are superimposed and transmitted simultaneously. Short-range data are transmitted in long-bit sequences with a small number of iterations, whereas long-range data are transmitted in short-bit sequences with a large number of iterations. These two datasets can be separately decoded at the receiver by superimposing and transmitting them at different amplitudes. The proposed method can decode all the superimposed data at short ranges, thus suppressing data rate degradation. As the communication distance increases, the proposed method decodes only the available data, allowing for data reception over longer ranges, albeit at a lower data rate. We further extend the proposed method by adding a third set of data, namely mid-range data, for further flexibility in communication distance and data rate. The experimental results show that the proposed method achieves data reception over a longer distance (up to 150 cm) while suppressing throughput degradation at short-ranges, that is, it mitigates the trade-off between the data rate and communication distances compared to conventional <inline-formula><tex-math>$M$</tex-math></inline-formula>-ary pulse amplitude modulation systems.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"17 3\",\"pages\":\"1-11\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10999103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10999103/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10999103/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在提供基于卷帘门的可见光通信(RS-VLC)通信距离变化的适应性。RS-VLC的一个关键问题是数据速率和通信距离之间的权衡。为了解决这一问题,我们提出了一种叠加数据传输方法,将两组数据即短距离数据和远程数据同时叠加传输。短距离数据以迭代次数少的长位序列传输,而远距离数据以迭代次数多的短位序列传输。这两个数据集可以在接收器上分别解码,通过叠加和以不同的幅度发送。该方法可以在短距离内对所有叠加数据进行解码,从而抑制了数据速率的下降。随着通信距离的增加,所提出的方法仅对可用数据进行解码,从而允许在更长的范围内接收数据,尽管数据速率较低。我们进一步扩展了所提出的方法,增加了第三组数据,即中程数据,以进一步提高通信距离和数据速率的灵活性。实验结果表明,该方法在较长距离(高达150 cm)上实现了数据接收,同时抑制了近距离的吞吐量下降,也就是说,与传统的毫微米脉冲调幅系统相比,它减轻了数据速率和通信距离之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Demonstration of Superimposed Data Transmission in Rolling Shutter Based Visible Light Communication
This study aims to provide adaptability to changes in the communication distance of rolling shutter based visible light communication (RS-VLC). A key issue in RS-VLC is the trade-off between the data rate and communication distance. To resolve this issue, we propose a superimposed data transmission method in which two sets of data, namely short- and long-range data, are superimposed and transmitted simultaneously. Short-range data are transmitted in long-bit sequences with a small number of iterations, whereas long-range data are transmitted in short-bit sequences with a large number of iterations. These two datasets can be separately decoded at the receiver by superimposing and transmitting them at different amplitudes. The proposed method can decode all the superimposed data at short ranges, thus suppressing data rate degradation. As the communication distance increases, the proposed method decodes only the available data, allowing for data reception over longer ranges, albeit at a lower data rate. We further extend the proposed method by adding a third set of data, namely mid-range data, for further flexibility in communication distance and data rate. The experimental results show that the proposed method achieves data reception over a longer distance (up to 150 cm) while suppressing throughput degradation at short-ranges, that is, it mitigates the trade-off between the data rate and communication distances compared to conventional $M$-ary pulse amplitude modulation systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信