Victor Y. Yukuhiro , Alan J. Gibson , Elton Sitta , Angel Cuesta , Pablo S. Fernández
{"title":"阳离子对醇和多元醇电氧化对铂的影响:活性、选择性和机理","authors":"Victor Y. Yukuhiro , Alan J. Gibson , Elton Sitta , Angel Cuesta , Pablo S. Fernández","doi":"10.1016/j.coelec.2025.101705","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the role of cations in the electro-oxidation of alcohols and polyols (EOAP) on Pt electrodes is essential for optimizing electrocatalytic processes in energy conversion and chemical production. This review explores how cations modulate activity, selectivity, and dynamic behavior during the EOAP. Larger cations, such as K<sup>+</sup>, enhance reaction rates and facilitate C–C bond cleavage, whereas smaller cations like Li<sup>+</sup> promote CO<sub>ad</sub> oxidation and the formation of inactive Pt oxides. The interplay between cations, adsorbed intermediates, and the electrode surface is analysed using complementary electrochemical and in situ spectroscopic techniques, covering hypotheses proposed to explain these observations. Despite progress, fundamental questions remain regarding the microscopic origins of cation effects, including the relative stabilities of key intermediates, how these stabilities influence their formation and oxidation, and ultimately how they govern the deactivation of Pt surfaces via the formation of inactive Pt oxides.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"52 ","pages":"Article 101705"},"PeriodicalIF":7.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of cations on the electro-oxidation of alcohols and polyols on Pt: Activity, selectivity, and mechanistic insights\",\"authors\":\"Victor Y. Yukuhiro , Alan J. Gibson , Elton Sitta , Angel Cuesta , Pablo S. Fernández\",\"doi\":\"10.1016/j.coelec.2025.101705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the role of cations in the electro-oxidation of alcohols and polyols (EOAP) on Pt electrodes is essential for optimizing electrocatalytic processes in energy conversion and chemical production. This review explores how cations modulate activity, selectivity, and dynamic behavior during the EOAP. Larger cations, such as K<sup>+</sup>, enhance reaction rates and facilitate C–C bond cleavage, whereas smaller cations like Li<sup>+</sup> promote CO<sub>ad</sub> oxidation and the formation of inactive Pt oxides. The interplay between cations, adsorbed intermediates, and the electrode surface is analysed using complementary electrochemical and in situ spectroscopic techniques, covering hypotheses proposed to explain these observations. Despite progress, fundamental questions remain regarding the microscopic origins of cation effects, including the relative stabilities of key intermediates, how these stabilities influence their formation and oxidation, and ultimately how they govern the deactivation of Pt surfaces via the formation of inactive Pt oxides.</div></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":\"52 \",\"pages\":\"Article 101705\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245191032500064X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245191032500064X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Effect of cations on the electro-oxidation of alcohols and polyols on Pt: Activity, selectivity, and mechanistic insights
Understanding the role of cations in the electro-oxidation of alcohols and polyols (EOAP) on Pt electrodes is essential for optimizing electrocatalytic processes in energy conversion and chemical production. This review explores how cations modulate activity, selectivity, and dynamic behavior during the EOAP. Larger cations, such as K+, enhance reaction rates and facilitate C–C bond cleavage, whereas smaller cations like Li+ promote COad oxidation and the formation of inactive Pt oxides. The interplay between cations, adsorbed intermediates, and the electrode surface is analysed using complementary electrochemical and in situ spectroscopic techniques, covering hypotheses proposed to explain these observations. Despite progress, fundamental questions remain regarding the microscopic origins of cation effects, including the relative stabilities of key intermediates, how these stabilities influence their formation and oxidation, and ultimately how they govern the deactivation of Pt surfaces via the formation of inactive Pt oxides.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •