Mei Bai , Ning An , Meng Cheng , Jia Qin , Jie Wang , Rumeng Jia , Wentao Liu , Jingcai Cheng , Qiang Xu , Xuefeng Wu
{"title":"天然化合物PEITC通过抑制中性粒细胞胞外陷阱的形成来改善吡喹莫德诱导的小鼠牛皮癣","authors":"Mei Bai , Ning An , Meng Cheng , Jia Qin , Jie Wang , Rumeng Jia , Wentao Liu , Jingcai Cheng , Qiang Xu , Xuefeng Wu","doi":"10.1016/j.intimp.2025.114939","DOIUrl":null,"url":null,"abstract":"<div><div>Neutrophil extracellular traps (NETs) play a key role in the development of psoriasis, a chronic inflammatory skin condition. We demonstrate the effects and possible mechanisms of phenethyl isothiocyanate (PEITC) in inhibiting NETs and alleviating psoriasis. In response to imiquimod (IMQ), multiple symptoms including scaly plaques and associated skin inflammations were induced in mice. IMQ additionally promotes the formation of NETs and the levels of inflammatory factors. Interestingly, a natural compound PEITC exerted an intensive activity in the treatment of psoriasis. It improved lesions and ameliorated ischemic coagulation symptoms in the dorsal skin of mice. PEITC also significantly reduced the expression of inflammatory factors in mice skin with an inhibition on NETs-related molecules, such as myeloperoxidase, neutrophil elastase and citrullinated histone H3. 16S rRNA sequencing analysis demonstrated that IMQ treatment induced significant gut microbiota dysbiosis in mice, suggesting potential detrimental effects on intestinal microbial homeostasis. However, PEITC administration did not show a statistically significant ameliorative effect on this IMQ-induced microbial imbalance. <em>In vitro</em> experiments demonstrated that PEITC significantly suppressed lipopolysaccharide (LPS)-induced NET formation, suggesting that its therapeutic effects in psoriasis may be due to the inhibition of bacterially driven neutrophil activation. Therefore, we identified PAD4, an important enzyme for post-translational modification of proteins in the production of NETs, as a new potential target of PEITC. Taken together, our findings suggest that PEITC could be a novel potential therapeutic drug to relieve psoriasis <em>via</em> the inhibition of NETs both <em>in vitro</em> and <em>in vivo</em>.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"159 ","pages":"Article 114939"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The natural compound PEITC ameliorates imiquimod-induced psoriasis in mice by suppressing neutrophil extracellular traps formation\",\"authors\":\"Mei Bai , Ning An , Meng Cheng , Jia Qin , Jie Wang , Rumeng Jia , Wentao Liu , Jingcai Cheng , Qiang Xu , Xuefeng Wu\",\"doi\":\"10.1016/j.intimp.2025.114939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neutrophil extracellular traps (NETs) play a key role in the development of psoriasis, a chronic inflammatory skin condition. We demonstrate the effects and possible mechanisms of phenethyl isothiocyanate (PEITC) in inhibiting NETs and alleviating psoriasis. In response to imiquimod (IMQ), multiple symptoms including scaly plaques and associated skin inflammations were induced in mice. IMQ additionally promotes the formation of NETs and the levels of inflammatory factors. Interestingly, a natural compound PEITC exerted an intensive activity in the treatment of psoriasis. It improved lesions and ameliorated ischemic coagulation symptoms in the dorsal skin of mice. PEITC also significantly reduced the expression of inflammatory factors in mice skin with an inhibition on NETs-related molecules, such as myeloperoxidase, neutrophil elastase and citrullinated histone H3. 16S rRNA sequencing analysis demonstrated that IMQ treatment induced significant gut microbiota dysbiosis in mice, suggesting potential detrimental effects on intestinal microbial homeostasis. However, PEITC administration did not show a statistically significant ameliorative effect on this IMQ-induced microbial imbalance. <em>In vitro</em> experiments demonstrated that PEITC significantly suppressed lipopolysaccharide (LPS)-induced NET formation, suggesting that its therapeutic effects in psoriasis may be due to the inhibition of bacterially driven neutrophil activation. Therefore, we identified PAD4, an important enzyme for post-translational modification of proteins in the production of NETs, as a new potential target of PEITC. Taken together, our findings suggest that PEITC could be a novel potential therapeutic drug to relieve psoriasis <em>via</em> the inhibition of NETs both <em>in vitro</em> and <em>in vivo</em>.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"159 \",\"pages\":\"Article 114939\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576925009294\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925009294","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
The natural compound PEITC ameliorates imiquimod-induced psoriasis in mice by suppressing neutrophil extracellular traps formation
Neutrophil extracellular traps (NETs) play a key role in the development of psoriasis, a chronic inflammatory skin condition. We demonstrate the effects and possible mechanisms of phenethyl isothiocyanate (PEITC) in inhibiting NETs and alleviating psoriasis. In response to imiquimod (IMQ), multiple symptoms including scaly plaques and associated skin inflammations were induced in mice. IMQ additionally promotes the formation of NETs and the levels of inflammatory factors. Interestingly, a natural compound PEITC exerted an intensive activity in the treatment of psoriasis. It improved lesions and ameliorated ischemic coagulation symptoms in the dorsal skin of mice. PEITC also significantly reduced the expression of inflammatory factors in mice skin with an inhibition on NETs-related molecules, such as myeloperoxidase, neutrophil elastase and citrullinated histone H3. 16S rRNA sequencing analysis demonstrated that IMQ treatment induced significant gut microbiota dysbiosis in mice, suggesting potential detrimental effects on intestinal microbial homeostasis. However, PEITC administration did not show a statistically significant ameliorative effect on this IMQ-induced microbial imbalance. In vitro experiments demonstrated that PEITC significantly suppressed lipopolysaccharide (LPS)-induced NET formation, suggesting that its therapeutic effects in psoriasis may be due to the inhibition of bacterially driven neutrophil activation. Therefore, we identified PAD4, an important enzyme for post-translational modification of proteins in the production of NETs, as a new potential target of PEITC. Taken together, our findings suggest that PEITC could be a novel potential therapeutic drug to relieve psoriasis via the inhibition of NETs both in vitro and in vivo.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.