噪声变分量子电路的经典模拟

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Enrico Fontana, Manuel S. Rudolph, Ross Duncan, Ivan Rungger, Cristina Cîrstoiu
{"title":"噪声变分量子电路的经典模拟","authors":"Enrico Fontana, Manuel S. Rudolph, Ross Duncan, Ivan Rungger, Cristina Cîrstoiu","doi":"10.1038/s41534-024-00955-1","DOIUrl":null,"url":null,"abstract":"<p>Noise detrimentally affects quantum computations so that they not only become less accurate but also easier to simulate classically as systems scale up. We construct a classical simulation algorithm, <span>lowesa</span> (low weight efficient simulation algorithm), for estimating expectation values of noisy parameterised quantum circuits with a fixed observable. It combines previous results on spectral analysis of parameterised circuits with Pauli back-propagation and recent ideas for simulations of noisy random circuits. We show, under some conditions on the circuits and mild assumptions on noise, that <span>lowesa</span> gives an efficient, polynomial algorithm in the number of qubits (and depth), with approximation error that vanishes exponentially in the physical error rate and a controllable cutoff parameter. This is valid for any expectation value that may be efficiently evaluated on a quantum computer. We discuss the practical limitations of the method for circuit classes with correlated parameters and its scaling with decreasing error rates.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"41 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical simulations of noisy variational quantum circuits\",\"authors\":\"Enrico Fontana, Manuel S. Rudolph, Ross Duncan, Ivan Rungger, Cristina Cîrstoiu\",\"doi\":\"10.1038/s41534-024-00955-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Noise detrimentally affects quantum computations so that they not only become less accurate but also easier to simulate classically as systems scale up. We construct a classical simulation algorithm, <span>lowesa</span> (low weight efficient simulation algorithm), for estimating expectation values of noisy parameterised quantum circuits with a fixed observable. It combines previous results on spectral analysis of parameterised circuits with Pauli back-propagation and recent ideas for simulations of noisy random circuits. We show, under some conditions on the circuits and mild assumptions on noise, that <span>lowesa</span> gives an efficient, polynomial algorithm in the number of qubits (and depth), with approximation error that vanishes exponentially in the physical error rate and a controllable cutoff parameter. This is valid for any expectation value that may be efficiently evaluated on a quantum computer. We discuss the practical limitations of the method for circuit classes with correlated parameters and its scaling with decreasing error rates.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00955-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00955-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

噪声对量子计算有不利影响,因此随着系统规模的扩大,它们不仅变得不那么精确,而且更容易进行经典模拟。我们构造了一个经典的模拟算法,lowesa(低权重效率模拟算法),用于估计具有固定观测值的噪声参数化量子电路的期望值。它结合了参数化电路与泡利反向传播的频谱分析的先前结果和噪声随机电路模拟的最新思想。我们表明,在电路的某些条件下和对噪声的温和假设下,lowesa给出了一个有效的、量子位(和深度)数量的多项式算法,其近似误差在物理错误率和可控截止参数中呈指数级消失。这对任何期望值都是有效的,可以在量子计算机上有效地评估。我们讨论了该方法对具有相关参数的电路类的实际限制,以及其随错误率的降低而缩放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Classical simulations of noisy variational quantum circuits

Classical simulations of noisy variational quantum circuits

Noise detrimentally affects quantum computations so that they not only become less accurate but also easier to simulate classically as systems scale up. We construct a classical simulation algorithm, lowesa (low weight efficient simulation algorithm), for estimating expectation values of noisy parameterised quantum circuits with a fixed observable. It combines previous results on spectral analysis of parameterised circuits with Pauli back-propagation and recent ideas for simulations of noisy random circuits. We show, under some conditions on the circuits and mild assumptions on noise, that lowesa gives an efficient, polynomial algorithm in the number of qubits (and depth), with approximation error that vanishes exponentially in the physical error rate and a controllable cutoff parameter. This is valid for any expectation value that may be efficiently evaluated on a quantum computer. We discuss the practical limitations of the method for circuit classes with correlated parameters and its scaling with decreasing error rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信