相对论对等离子体湍流中间歇性的机器学习表征:单片和双片结构

Trung Ha, Joonas Nättilä, Jordy Davelaar and Lorenzo Sironi
{"title":"相对论对等离子体湍流中间歇性的机器学习表征:单片和双片结构","authors":"Trung Ha, Joonas Nättilä, Jordy Davelaar and Lorenzo Sironi","doi":"10.3847/2041-8213/add47b","DOIUrl":null,"url":null,"abstract":"The physics of turbulence in magnetized plasmas remains an unresolved problem. The most poorly understood aspect is intermittency—spatiotemporal fluctuations superimposed on the self-similar turbulent motions. We employ a novel machine learning analysis technique to segment turbulent flow structures into distinct clusters based on statistical similarities across multiple physical features. We apply this technique to kinetic simulations of decaying (freely evolving) and driven (forced) turbulence in a strongly magnetized pair-plasma environment, and find that the previously identified intermittent fluctuations consist of two distinct clusters: (i) current sheets, thin slabs of electric current between merging flux ropes, and; (ii) double sheets, pairs of oppositely polarized current slabs, possibly generated by two nonlinearly interacting Alfvén-wave packets. The distinction is crucial for the construction of realistic turbulence subgrid models.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Characterization of Intermittency in Relativistic Pair Plasma Turbulence: Single and Double Sheet Structures\",\"authors\":\"Trung Ha, Joonas Nättilä, Jordy Davelaar and Lorenzo Sironi\",\"doi\":\"10.3847/2041-8213/add47b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physics of turbulence in magnetized plasmas remains an unresolved problem. The most poorly understood aspect is intermittency—spatiotemporal fluctuations superimposed on the self-similar turbulent motions. We employ a novel machine learning analysis technique to segment turbulent flow structures into distinct clusters based on statistical similarities across multiple physical features. We apply this technique to kinetic simulations of decaying (freely evolving) and driven (forced) turbulence in a strongly magnetized pair-plasma environment, and find that the previously identified intermittent fluctuations consist of two distinct clusters: (i) current sheets, thin slabs of electric current between merging flux ropes, and; (ii) double sheets, pairs of oppositely polarized current slabs, possibly generated by two nonlinearly interacting Alfvén-wave packets. The distinction is crucial for the construction of realistic turbulence subgrid models.\",\"PeriodicalId\":501814,\"journal\":{\"name\":\"The Astrophysical Journal Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/2041-8213/add47b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/add47b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁化等离子体中的湍流物理学仍然是一个未解决的问题。最难以理解的方面是间歇性——叠加在自相似湍流运动上的时空波动。我们采用了一种新颖的机器学习分析技术,根据多个物理特征的统计相似性将湍流结构划分为不同的簇。我们将该技术应用于强磁化对等离子体环境中衰变(自由演化)和驱动(强制)湍流的动力学模拟,发现先前确定的间歇性波动由两个不同的簇组成:(i)电流片,在合并的通量绳之间的电流薄板;(ii)双片,一对极性相反的电流板,可能是由两个非线性相互作用的alfvsamn -wave包产生的。这种区别对于构建真实的湍流子网格模型至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Characterization of Intermittency in Relativistic Pair Plasma Turbulence: Single and Double Sheet Structures
The physics of turbulence in magnetized plasmas remains an unresolved problem. The most poorly understood aspect is intermittency—spatiotemporal fluctuations superimposed on the self-similar turbulent motions. We employ a novel machine learning analysis technique to segment turbulent flow structures into distinct clusters based on statistical similarities across multiple physical features. We apply this technique to kinetic simulations of decaying (freely evolving) and driven (forced) turbulence in a strongly magnetized pair-plasma environment, and find that the previously identified intermittent fluctuations consist of two distinct clusters: (i) current sheets, thin slabs of electric current between merging flux ropes, and; (ii) double sheets, pairs of oppositely polarized current slabs, possibly generated by two nonlinearly interacting Alfvén-wave packets. The distinction is crucial for the construction of realistic turbulence subgrid models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信