2023-2024年强El Niño由海洋动力学产生

IF 15.7 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Qihua Peng, Shang-Ping Xie, Ayumu Miyamoto, Clara Deser, Pengcheng Zhang, Matthew T. Luongo
{"title":"2023-2024年强El Niño由海洋动力学产生","authors":"Qihua Peng, Shang-Ping Xie, Ayumu Miyamoto, Clara Deser, Pengcheng Zhang, Matthew T. Luongo","doi":"10.1038/s41561-025-01700-9","DOIUrl":null,"url":null,"abstract":"<p>Globally, 2023 was the hottest year on record and saw the development of a strong El Niño with widespread impacts. This El Niño event was unusual for its strong oceanic warming yet muted Southern Oscillation and wind anomalies over the tropical Pacific. This discrepancy is perplexing given the historically close coupling of El Niño and the Southern Oscillation. Atmospheric model experiments show that warming in the Atlantic and Indian Oceans in 2023 and the slow background sea surface temperature trend reduced the surface wind response over the tropical Pacific by modulating the Walker circulation. We develop a hindcast system that reproduces 87% of the June–December El Niño warming even without wind stress feedback after April 2023. The intense oceanic warming was primarily driven by the strong build-up of western Pacific heat content during the preceding prolonged La Niña. This indicates that the 2023–2024 El Niño primarily arose from oceanic processes, independent of the classic positive Bjerknes feedback mechanism. Due to the strong ocean memory, this event was highly predictable at long time leads. Climate model simulations suggest that such 2023-like El Niños may become more frequent in a warming climate.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"6 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong 2023–2024 El Niño generated by ocean dynamics\",\"authors\":\"Qihua Peng, Shang-Ping Xie, Ayumu Miyamoto, Clara Deser, Pengcheng Zhang, Matthew T. Luongo\",\"doi\":\"10.1038/s41561-025-01700-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Globally, 2023 was the hottest year on record and saw the development of a strong El Niño with widespread impacts. This El Niño event was unusual for its strong oceanic warming yet muted Southern Oscillation and wind anomalies over the tropical Pacific. This discrepancy is perplexing given the historically close coupling of El Niño and the Southern Oscillation. Atmospheric model experiments show that warming in the Atlantic and Indian Oceans in 2023 and the slow background sea surface temperature trend reduced the surface wind response over the tropical Pacific by modulating the Walker circulation. We develop a hindcast system that reproduces 87% of the June–December El Niño warming even without wind stress feedback after April 2023. The intense oceanic warming was primarily driven by the strong build-up of western Pacific heat content during the preceding prolonged La Niña. This indicates that the 2023–2024 El Niño primarily arose from oceanic processes, independent of the classic positive Bjerknes feedback mechanism. Due to the strong ocean memory, this event was highly predictable at long time leads. Climate model simulations suggest that such 2023-like El Niños may become more frequent in a warming climate.</p>\",\"PeriodicalId\":19053,\"journal\":{\"name\":\"Nature Geoscience\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41561-025-01700-9\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41561-025-01700-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从全球来看,2023年是有记录以来最热的一年,强厄尔尼诺Niño的发展带来了广泛的影响。这次El Niño事件的不同寻常之处在于它强烈的海洋变暖,但却减弱了南方涛动和热带太平洋上的风异常。考虑到厄尔尼诺Niño和南方涛动在历史上的紧密耦合,这种差异令人困惑。大气模式实验表明,2023年大西洋和印度洋变暖以及缓慢的背景海温趋势通过调节Walker环流减弱了热带太平洋上空的地面风响应。我们开发了一个后播系统,即使没有2023年4月之后的风应力反馈,也能再现6月至12月厄尔尼诺Niño变暖的87%。强烈的海洋变暖主要是由之前延长La Niña期间西太平洋热含量的强烈积累所驱动的。这表明2023-2024年El Niño主要来自海洋过程,独立于经典的正Bjerknes反馈机制。由于强大的海洋记忆,这一事件在很长一段时间内是高度可预测的。气候模型模拟表明,在气候变暖的情况下,类似2023年的厄尔尼诺Niños可能会变得更加频繁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strong 2023–2024 El Niño generated by ocean dynamics

Strong 2023–2024 El Niño generated by ocean dynamics

Globally, 2023 was the hottest year on record and saw the development of a strong El Niño with widespread impacts. This El Niño event was unusual for its strong oceanic warming yet muted Southern Oscillation and wind anomalies over the tropical Pacific. This discrepancy is perplexing given the historically close coupling of El Niño and the Southern Oscillation. Atmospheric model experiments show that warming in the Atlantic and Indian Oceans in 2023 and the slow background sea surface temperature trend reduced the surface wind response over the tropical Pacific by modulating the Walker circulation. We develop a hindcast system that reproduces 87% of the June–December El Niño warming even without wind stress feedback after April 2023. The intense oceanic warming was primarily driven by the strong build-up of western Pacific heat content during the preceding prolonged La Niña. This indicates that the 2023–2024 El Niño primarily arose from oceanic processes, independent of the classic positive Bjerknes feedback mechanism. Due to the strong ocean memory, this event was highly predictable at long time leads. Climate model simulations suggest that such 2023-like El Niños may become more frequent in a warming climate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Geoscience
Nature Geoscience 地学-地球科学综合
CiteScore
26.70
自引率
1.60%
发文量
187
审稿时长
3.3 months
期刊介绍: Nature Geoscience is a monthly interdisciplinary journal that gathers top-tier research spanning Earth Sciences and related fields. The journal covers all geoscience disciplines, including fieldwork, modeling, and theoretical studies. Topics include atmospheric science, biogeochemistry, climate science, geobiology, geochemistry, geoinformatics, remote sensing, geology, geomagnetism, paleomagnetism, geomorphology, geophysics, glaciology, hydrology, limnology, mineralogy, oceanography, paleontology, paleoclimatology, paleoceanography, petrology, planetary science, seismology, space physics, tectonics, and volcanology. Nature Geoscience upholds its commitment to publishing significant, high-quality Earth Sciences research through fair, rapid, and rigorous peer review, overseen by a team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信