揭示拓扑阴离子交换在CuS1-xTex的稳健Zn离子储存中的作用

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ruinan Chen, Jinxin Li, Daohong Zhang, Tong Zhou, Hao Wu, Qiufan Wang
{"title":"揭示拓扑阴离子交换在CuS1-xTex的稳健Zn离子储存中的作用","authors":"Ruinan Chen, Jinxin Li, Daohong Zhang, Tong Zhou, Hao Wu, Qiufan Wang","doi":"10.1021/acssuschemeng.5c02645","DOIUrl":null,"url":null,"abstract":"Rechargeable aqueous zinc-ion batteries (ZIBs) exhibit significant potential for next-generation energy storage technologies, yet their development is hindered by Zn metal anode challenges, such as dendrites and parasitic reactions. Herein, an anionic Te-substitution CuS (CuS<sub>1–<i>x</i></sub>Te<sub><i>x</i></sub>) is put forward as a promising conversion-type Zn-metal-free anode for aqueous ZIBs. The Te substitution tailors the electronic structure of CuS and enhances the conductivity. The synergistic effect endows the CuS<sub>1–<i>x</i></sub>Te<sub><i>x</i></sub> anode with a higher capacity up to 274 mA h g<sup>–1</sup> at 0.1 A g<sup>–1</sup> than that of pure CuS (100 mA h g<sup>–1</sup>). An aqueous “rocking-chair” CuS<sub>1–<i>x</i></sub>Te<sub><i>x</i></sub>//MnO<sub>2</sub> Zn-ion full battery is demonstrated, which provides a high specific capacity of 109 mA h g<sup>–1</sup>.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"18 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the Role of Topotactic Anion Exchange in the Robust Zn Ion Storage of CuS1–xTex\",\"authors\":\"Ruinan Chen, Jinxin Li, Daohong Zhang, Tong Zhou, Hao Wu, Qiufan Wang\",\"doi\":\"10.1021/acssuschemeng.5c02645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rechargeable aqueous zinc-ion batteries (ZIBs) exhibit significant potential for next-generation energy storage technologies, yet their development is hindered by Zn metal anode challenges, such as dendrites and parasitic reactions. Herein, an anionic Te-substitution CuS (CuS<sub>1–<i>x</i></sub>Te<sub><i>x</i></sub>) is put forward as a promising conversion-type Zn-metal-free anode for aqueous ZIBs. The Te substitution tailors the electronic structure of CuS and enhances the conductivity. The synergistic effect endows the CuS<sub>1–<i>x</i></sub>Te<sub><i>x</i></sub> anode with a higher capacity up to 274 mA h g<sup>–1</sup> at 0.1 A g<sup>–1</sup> than that of pure CuS (100 mA h g<sup>–1</sup>). An aqueous “rocking-chair” CuS<sub>1–<i>x</i></sub>Te<sub><i>x</i></sub>//MnO<sub>2</sub> Zn-ion full battery is demonstrated, which provides a high specific capacity of 109 mA h g<sup>–1</sup>.\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssuschemeng.5c02645\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.5c02645","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可充电水性锌离子电池(zib)在下一代储能技术中表现出巨大的潜力,但其发展受到锌金属阳极挑战的阻碍,如枝晶和寄生反应。本文提出了一种阴离子te取代CuS (CuS1-xTex),作为一种很有前途的转换型无锌金属阳极。Te取代调整了cu的电子结构,提高了其导电性。这种协同效应使CuS1-xTex阳极在0.1 a g-1下的容量比纯cu阳极(100 mA h g-1)高,最高可达274 mA h g-1。展示了一种“摇椅”型CuS1-xTex //MnO2锌离子全电池,其比容量高达109 mA h g-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revealing the Role of Topotactic Anion Exchange in the Robust Zn Ion Storage of CuS1–xTex

Revealing the Role of Topotactic Anion Exchange in the Robust Zn Ion Storage of CuS1–xTex
Rechargeable aqueous zinc-ion batteries (ZIBs) exhibit significant potential for next-generation energy storage technologies, yet their development is hindered by Zn metal anode challenges, such as dendrites and parasitic reactions. Herein, an anionic Te-substitution CuS (CuS1–xTex) is put forward as a promising conversion-type Zn-metal-free anode for aqueous ZIBs. The Te substitution tailors the electronic structure of CuS and enhances the conductivity. The synergistic effect endows the CuS1–xTex anode with a higher capacity up to 274 mA h g–1 at 0.1 A g–1 than that of pure CuS (100 mA h g–1). An aqueous “rocking-chair” CuS1–xTex//MnO2 Zn-ion full battery is demonstrated, which provides a high specific capacity of 109 mA h g–1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信