Weida Zhang, Yuanyuan Zhang, Weidong Mao, Tao Huang, Xinrong Yu, Xiaohong Qin, Li-Zhi Mi
{"title":"未加工的BMP9前体是其活性生长因子的内在拮抗剂","authors":"Weida Zhang, Yuanyuan Zhang, Weidong Mao, Tao Huang, Xinrong Yu, Xiaohong Qin, Li-Zhi Mi","doi":"10.1016/j.str.2025.04.021","DOIUrl":null,"url":null,"abstract":"BMP9, a member of the TGFβ superfamily, plays a crucial role in angiogenesis, tissue development, and innate immunity. Dysregulation of BMP9 signaling is implicated in various diseases. Unlike latent TGFβs, BMP9 is produced as a precursor that is processed into an active pro-protein complex. However, the regulatory mechanisms governing the precursor’s activity and its biological functions have been largely unexplored. In this study, we demonstrate that the unprocessed BMP9 precursor acts as an intrinsic antagonist to its pro-protein in angiogenesis and osteogenesis. This inhibition occurs through competitive binding to the receptors ENG and ALK1. We also identify structural requirements for the precursor’s recognition by these receptors. Our findings reveal previously underappreciated functions of the BMP9 precursor and its regulatory mechanisms in growth factor signaling, with significant implications for developmental biology and clinical interventions.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"45 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unprocessed BMP9 precursor is an intrinsic antagonist for its active growth factor\",\"authors\":\"Weida Zhang, Yuanyuan Zhang, Weidong Mao, Tao Huang, Xinrong Yu, Xiaohong Qin, Li-Zhi Mi\",\"doi\":\"10.1016/j.str.2025.04.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BMP9, a member of the TGFβ superfamily, plays a crucial role in angiogenesis, tissue development, and innate immunity. Dysregulation of BMP9 signaling is implicated in various diseases. Unlike latent TGFβs, BMP9 is produced as a precursor that is processed into an active pro-protein complex. However, the regulatory mechanisms governing the precursor’s activity and its biological functions have been largely unexplored. In this study, we demonstrate that the unprocessed BMP9 precursor acts as an intrinsic antagonist to its pro-protein in angiogenesis and osteogenesis. This inhibition occurs through competitive binding to the receptors ENG and ALK1. We also identify structural requirements for the precursor’s recognition by these receptors. Our findings reveal previously underappreciated functions of the BMP9 precursor and its regulatory mechanisms in growth factor signaling, with significant implications for developmental biology and clinical interventions.\",\"PeriodicalId\":22168,\"journal\":{\"name\":\"Structure\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.str.2025.04.021\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2025.04.021","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Unprocessed BMP9 precursor is an intrinsic antagonist for its active growth factor
BMP9, a member of the TGFβ superfamily, plays a crucial role in angiogenesis, tissue development, and innate immunity. Dysregulation of BMP9 signaling is implicated in various diseases. Unlike latent TGFβs, BMP9 is produced as a precursor that is processed into an active pro-protein complex. However, the regulatory mechanisms governing the precursor’s activity and its biological functions have been largely unexplored. In this study, we demonstrate that the unprocessed BMP9 precursor acts as an intrinsic antagonist to its pro-protein in angiogenesis and osteogenesis. This inhibition occurs through competitive binding to the receptors ENG and ALK1. We also identify structural requirements for the precursor’s recognition by these receptors. Our findings reveal previously underappreciated functions of the BMP9 precursor and its regulatory mechanisms in growth factor signaling, with significant implications for developmental biology and clinical interventions.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.