{"title":"细胞外压电纳米贴促进神经元分化","authors":"","doi":"10.1038/s41563-025-02215-9","DOIUrl":null,"url":null,"abstract":"Treatments for traumatic brain injury are lacking owing to the limited regenerative capacity of neurons. Now, ultrasound-activated piezoelectric nanostickers that attach to cell membranes are shown to promote the neuronal differentiation of transplanted stem cells, leading to substantial brain tissue repair in rats with traumatic brain injury.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"59 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracellular piezoelectric nanostickers promote neuronal differentiation\",\"authors\":\"\",\"doi\":\"10.1038/s41563-025-02215-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Treatments for traumatic brain injury are lacking owing to the limited regenerative capacity of neurons. Now, ultrasound-activated piezoelectric nanostickers that attach to cell membranes are shown to promote the neuronal differentiation of transplanted stem cells, leading to substantial brain tissue repair in rats with traumatic brain injury.\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":38.5000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02215-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02215-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Treatments for traumatic brain injury are lacking owing to the limited regenerative capacity of neurons. Now, ultrasound-activated piezoelectric nanostickers that attach to cell membranes are shown to promote the neuronal differentiation of transplanted stem cells, leading to substantial brain tissue repair in rats with traumatic brain injury.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.