Philippe Schiel, Mounir Maaloum, Emilie Moulin, Irina Nyrkova, Alexander Semenov, Damien Dattler, Lou-Ann Accou, Anastasia Christoulaki, Eric Buhler, Rémi Plamont, Jean-Marie Lehn, Nicolas Giuseppone
{"title":"通过旋转光驱动分子马达进行超分子聚合","authors":"Philippe Schiel, Mounir Maaloum, Emilie Moulin, Irina Nyrkova, Alexander Semenov, Damien Dattler, Lou-Ann Accou, Anastasia Christoulaki, Eric Buhler, Rémi Plamont, Jean-Marie Lehn, Nicolas Giuseppone","doi":"10.1038/s41565-025-01933-0","DOIUrl":null,"url":null,"abstract":"<p>Molecular motors can act on their environment through their unique ability to generate non-reciprocal autonomous motions at the nanoscale. Although their operating principles are now understood, artificial molecular motors have yet to demonstrate their general capacity to confer novel properties on (supra)molecular systems and materials. Here we show that amphiphilic light-driven molecular motors can adsorb onto an air‒water interface and form Langmuir monolayers upon compression. By irradiation with ultraviolet light, the surface pressure isotherms of these films reveal a drastic shift toward a smaller molecular area as a consequence of motor activation. We explain this counterintuitive phenomenon by the rotation-induced supramolecular polymerization of amphiphilic motors through a non-thermal annealing process to escape a kinetically trapped amorphous state. The effect is limited by the maximum torque the molecular motor can deliver (~10 pN nm) and leads to the formation of highly organized patterns. This serendipitous discovery highlights the opportunities offered by molecular motors to control supramolecular polymerization for the design of innovative materials.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"88 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular polymerization through rotation of light-driven molecular motors\",\"authors\":\"Philippe Schiel, Mounir Maaloum, Emilie Moulin, Irina Nyrkova, Alexander Semenov, Damien Dattler, Lou-Ann Accou, Anastasia Christoulaki, Eric Buhler, Rémi Plamont, Jean-Marie Lehn, Nicolas Giuseppone\",\"doi\":\"10.1038/s41565-025-01933-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular motors can act on their environment through their unique ability to generate non-reciprocal autonomous motions at the nanoscale. Although their operating principles are now understood, artificial molecular motors have yet to demonstrate their general capacity to confer novel properties on (supra)molecular systems and materials. Here we show that amphiphilic light-driven molecular motors can adsorb onto an air‒water interface and form Langmuir monolayers upon compression. By irradiation with ultraviolet light, the surface pressure isotherms of these films reveal a drastic shift toward a smaller molecular area as a consequence of motor activation. We explain this counterintuitive phenomenon by the rotation-induced supramolecular polymerization of amphiphilic motors through a non-thermal annealing process to escape a kinetically trapped amorphous state. The effect is limited by the maximum torque the molecular motor can deliver (~10 pN nm) and leads to the formation of highly organized patterns. This serendipitous discovery highlights the opportunities offered by molecular motors to control supramolecular polymerization for the design of innovative materials.</p>\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01933-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01933-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Supramolecular polymerization through rotation of light-driven molecular motors
Molecular motors can act on their environment through their unique ability to generate non-reciprocal autonomous motions at the nanoscale. Although their operating principles are now understood, artificial molecular motors have yet to demonstrate their general capacity to confer novel properties on (supra)molecular systems and materials. Here we show that amphiphilic light-driven molecular motors can adsorb onto an air‒water interface and form Langmuir monolayers upon compression. By irradiation with ultraviolet light, the surface pressure isotherms of these films reveal a drastic shift toward a smaller molecular area as a consequence of motor activation. We explain this counterintuitive phenomenon by the rotation-induced supramolecular polymerization of amphiphilic motors through a non-thermal annealing process to escape a kinetically trapped amorphous state. The effect is limited by the maximum torque the molecular motor can deliver (~10 pN nm) and leads to the formation of highly organized patterns. This serendipitous discovery highlights the opportunities offered by molecular motors to control supramolecular polymerization for the design of innovative materials.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.