Peiyuan Pang, Zhipeng Zhang, Bingzhe Wang, Tao Sheng, Guichuan Xing
{"title":"通过双加性相位调制实现高效和颜色稳定的蓝色钙钛矿发光二极管","authors":"Peiyuan Pang, Zhipeng Zhang, Bingzhe Wang, Tao Sheng, Guichuan Xing","doi":"10.1039/d5nr00952a","DOIUrl":null,"url":null,"abstract":"Despite remarkable progress in sky-blue perovskite light-emitting diodes (PeLEDs), achieving efficient and color stable pure-blue electroluminescence remains challenging due to halide phase segregation, low-dimensional phase-induced non-radiative recombination, and defect-related losses in mixed Cl-Br quasi-2D perovskites. Here, we propose a dual-additive strategy to regulate phase distribution and manage Cl incorporation in quasi-2D perovskites for pure-blue PeLEDs. By introducing EDACl2 to suppress high-n phases and incorporate Cl for bandgap broadening, combined with NaBr to eliminate low-n non-radiative centers and promote small-sized nanocrystals, we optimize radiative recombination toward wide-bandgap phase distribution. This approach enables spectrally stable pure-blue electroluminescence at 474 nm without compromising photoluminescence quantum yield. Further hole-transport-layer engineering yields a peak external quantum efficiency of 4.6%, with spectral stability maintained under extreme bias up to 10.4 V. Our work provides critical insights into phase and halide management for high-performance blue PeLEDs, advancing their potential in full-color displays and lighting technologies.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"18 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and Color Stable Blue Perovskite Light-Emitting Diodes Achieved via Dual-Additive Phase Modulation\",\"authors\":\"Peiyuan Pang, Zhipeng Zhang, Bingzhe Wang, Tao Sheng, Guichuan Xing\",\"doi\":\"10.1039/d5nr00952a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite remarkable progress in sky-blue perovskite light-emitting diodes (PeLEDs), achieving efficient and color stable pure-blue electroluminescence remains challenging due to halide phase segregation, low-dimensional phase-induced non-radiative recombination, and defect-related losses in mixed Cl-Br quasi-2D perovskites. Here, we propose a dual-additive strategy to regulate phase distribution and manage Cl incorporation in quasi-2D perovskites for pure-blue PeLEDs. By introducing EDACl2 to suppress high-n phases and incorporate Cl for bandgap broadening, combined with NaBr to eliminate low-n non-radiative centers and promote small-sized nanocrystals, we optimize radiative recombination toward wide-bandgap phase distribution. This approach enables spectrally stable pure-blue electroluminescence at 474 nm without compromising photoluminescence quantum yield. Further hole-transport-layer engineering yields a peak external quantum efficiency of 4.6%, with spectral stability maintained under extreme bias up to 10.4 V. Our work provides critical insights into phase and halide management for high-performance blue PeLEDs, advancing their potential in full-color displays and lighting technologies.\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nr00952a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr00952a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient and Color Stable Blue Perovskite Light-Emitting Diodes Achieved via Dual-Additive Phase Modulation
Despite remarkable progress in sky-blue perovskite light-emitting diodes (PeLEDs), achieving efficient and color stable pure-blue electroluminescence remains challenging due to halide phase segregation, low-dimensional phase-induced non-radiative recombination, and defect-related losses in mixed Cl-Br quasi-2D perovskites. Here, we propose a dual-additive strategy to regulate phase distribution and manage Cl incorporation in quasi-2D perovskites for pure-blue PeLEDs. By introducing EDACl2 to suppress high-n phases and incorporate Cl for bandgap broadening, combined with NaBr to eliminate low-n non-radiative centers and promote small-sized nanocrystals, we optimize radiative recombination toward wide-bandgap phase distribution. This approach enables spectrally stable pure-blue electroluminescence at 474 nm without compromising photoluminescence quantum yield. Further hole-transport-layer engineering yields a peak external quantum efficiency of 4.6%, with spectral stability maintained under extreme bias up to 10.4 V. Our work provides critical insights into phase and halide management for high-performance blue PeLEDs, advancing their potential in full-color displays and lighting technologies.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.