电子掺杂La2-xCexCuO4中扩展的奇异金属相

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Cenyao Tang, Zefeng Lin, Shunye Gao, Jin Zhao, Xingchen Guo, Zhicheng Rao, Yigui Zhong, Xilin Feng, Jianyu Guan, Yaobo Huang, Tian Qian, Weiqiang Chen, Zhengyu Weng, Hong Ding, Kun Jiang, Kui Jin, Yujie Sun
{"title":"电子掺杂La2-xCexCuO4中扩展的奇异金属相","authors":"Cenyao Tang, Zefeng Lin, Shunye Gao, Jin Zhao, Xingchen Guo, Zhicheng Rao, Yigui Zhong, Xilin Feng, Jianyu Guan, Yaobo Huang, Tian Qian, Weiqiang Chen, Zhengyu Weng, Hong Ding, Kun Jiang, Kui Jin, Yujie Sun","doi":"10.1021/acs.nanolett.5c01385","DOIUrl":null,"url":null,"abstract":"Landau’s Fermi liquid theory offers a profound understanding of conduction electrons in metals. However, many strongly correlated materials, including heavy-fermions, cuprates, iron-based superconductors, and nickelates, exhibit non-Fermi liquid (NFL) behavior. A hallmark is the strange metal state, characterized by linear-in-temperature resistivity and a linear-in-energy single-particle decay rate. Using angle-resolved photoemission spectroscopy measurements, we systematically investigate electron-doped cuprate La<sub>2–<i>x</i></sub>Ce<sub><i>x</i></sub>CuO<sub>4</sub> (LCCO) to explore the doping, momentum, and temperature dependence of the self-energy. We observe robust linear-in-energy single-particle scattering across almost the entire momentum space, persisting at high doping levels and temperatures. The extended strange metal behavior suggests a unified normal state, in contrast to an adjacent pseudogap regime in the hole-doped cuprates. This indicates that the physics of the strange metal may be key to high-<i>T</i><sub>c</sub> superconductivity, making LCCO an ideal system for exploring quantum criticality and offering new insights into the microscopic mechanisms for high-<i>T</i><sub>c</sub> superconductivity.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"11 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Strange Metal Phase in Electron-Doped La2–xCexCuO4\",\"authors\":\"Cenyao Tang, Zefeng Lin, Shunye Gao, Jin Zhao, Xingchen Guo, Zhicheng Rao, Yigui Zhong, Xilin Feng, Jianyu Guan, Yaobo Huang, Tian Qian, Weiqiang Chen, Zhengyu Weng, Hong Ding, Kun Jiang, Kui Jin, Yujie Sun\",\"doi\":\"10.1021/acs.nanolett.5c01385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Landau’s Fermi liquid theory offers a profound understanding of conduction electrons in metals. However, many strongly correlated materials, including heavy-fermions, cuprates, iron-based superconductors, and nickelates, exhibit non-Fermi liquid (NFL) behavior. A hallmark is the strange metal state, characterized by linear-in-temperature resistivity and a linear-in-energy single-particle decay rate. Using angle-resolved photoemission spectroscopy measurements, we systematically investigate electron-doped cuprate La<sub>2–<i>x</i></sub>Ce<sub><i>x</i></sub>CuO<sub>4</sub> (LCCO) to explore the doping, momentum, and temperature dependence of the self-energy. We observe robust linear-in-energy single-particle scattering across almost the entire momentum space, persisting at high doping levels and temperatures. The extended strange metal behavior suggests a unified normal state, in contrast to an adjacent pseudogap regime in the hole-doped cuprates. This indicates that the physics of the strange metal may be key to high-<i>T</i><sub>c</sub> superconductivity, making LCCO an ideal system for exploring quantum criticality and offering new insights into the microscopic mechanisms for high-<i>T</i><sub>c</sub> superconductivity.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.5c01385\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01385","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

朗道的费米液体理论对金属中的传导电子提供了深刻的理解。然而,许多强相关材料,包括重费米子、铜酸盐、铁基超导体和镍酸盐,都表现出非费米液体(NFL)行为。一个标志是奇怪的金属状态,其特征是线性温度电阻率和线性能量单粒子衰减率。利用角分辨光发射光谱测量,我们系统地研究了电子掺杂的铜La2-xCexCuO4 (LCCO),以探索掺杂、动量和温度对自能的依赖。我们在几乎整个动量空间中观察到强大的线性能量单粒子散射,在高掺杂水平和高温度下持续存在。扩展的奇异金属行为表明了一个统一的正常状态,与邻近的赝隙制度形成对比的是空穴掺杂铜酸盐。这表明奇怪金属的物理特性可能是高tc超导的关键,使LCCO成为探索量子临界性的理想系统,并为高tc超导的微观机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Extended Strange Metal Phase in Electron-Doped La2–xCexCuO4

Extended Strange Metal Phase in Electron-Doped La2–xCexCuO4
Landau’s Fermi liquid theory offers a profound understanding of conduction electrons in metals. However, many strongly correlated materials, including heavy-fermions, cuprates, iron-based superconductors, and nickelates, exhibit non-Fermi liquid (NFL) behavior. A hallmark is the strange metal state, characterized by linear-in-temperature resistivity and a linear-in-energy single-particle decay rate. Using angle-resolved photoemission spectroscopy measurements, we systematically investigate electron-doped cuprate La2–xCexCuO4 (LCCO) to explore the doping, momentum, and temperature dependence of the self-energy. We observe robust linear-in-energy single-particle scattering across almost the entire momentum space, persisting at high doping levels and temperatures. The extended strange metal behavior suggests a unified normal state, in contrast to an adjacent pseudogap regime in the hole-doped cuprates. This indicates that the physics of the strange metal may be key to high-Tc superconductivity, making LCCO an ideal system for exploring quantum criticality and offering new insights into the microscopic mechanisms for high-Tc superconductivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信